
Phase transitions in the Ramsey-Turán theory
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Abstract

Let f(n) be a function and L be a graph. Denote by RT(n, L, f(n)) the maximum num-
ber of edges of an L-free graph on n vertices with independence number less than f(n).
Erdős and Sós [1] asked if RT(n,K5, c

√
n) = o(n2) for some constant c. We answer

this question by proving the stronger RT
(
n,K5, o

(√
n log n

))
= o(n2). It is known that

RT
(
n,K5, c

√
n log n

)
= n2/4 + o(n2) for c > 1, so one can say that K5 has a Ramsey-Turán

phase transition at c
√
n log n. We extend this result to several other Ks’s and functions

f(n), determining many more phase transitions. We shall formulate several open problems,
in particular, whether variants of the Bollobás-Erdős graph exist to give good lower bounds
on RT(n,Ks, f(n)) for various pairs of s and f(n). Among others, we use Szemerédi’s Reg-
ularity Lemma and the Hypergraph Dependent Random Choice Lemma. We also present a
short proof of the fact that Ks-free graphs with small independence number are sparse.

Keywords: Ramsey, Turán, independence number, dependent random choice

1. Introduction

Notation. In this paper we shall consider only simple graphs, i.e., graphs without
loops and multiple edges. As usual, Gn will always denote a graph on n vertices. More
generally, in case of graphs the (first) subscript will always denote the number of vertices,
for example Ks is the complete graph on s vertices, and Tn,r is the r-partite Turán graph
on n vertices, i.e., the complete r-partite graph on n vertices with class sizes as equal as
possible. Given a graph G, we use e(G) to denote its number of edges, and use α(G) to
denote its independence number. Given a subset U of the vertex set of a graph G, we use
G[U ] to denote the subgraph of G induced by U .

In this paper all logarithms are base 2; ω(n) denotes an arbitrary function tending to
infinity slowly enough so that all calculations we use go through. Whenever we write that
“ω(n) → ∞ slowly”, we mean that the reader may choose an arbitrary ω(n) → ∞, the
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assertion will hold, and the more slowly ω(n) → ∞ the stronger the assertion, i.e., the
theorem is. In the proofs, we shall assume that ω(n) = o(log log log n). In our cases, if
we prove some theorems for such functions ω(n), then these results remain valid for larger
functions as well. To simplify the formulas, we shall often omit the floor and ceiling signs,
assuming that they are not crucial.

Sós [2] and Erdős and Sós [1] defined the following ‘Ramsey-Turán’ function:

Definition 1.1. Denote by RT(n, L,m) the maximum number of edges of an L-free graph
on n vertices with independence number less than m.

We are interested in the asymptotic behavior of RT(n, L, f(n)) and its “phase transi-
tions”, i.e., in the question, when and how the asymptotic behavior of RT(n, L, f) changes
sharply when we replace f by a slightly smaller g.

Definition 1.2. Let

ρτ(L, f) = lim sup
n→∞

RT(n, L, f(n))

n2
and ρτ(L, f) = lim inf

n→∞

RT(n, L, f(n))

n2
.

If ρτ(L, f) = ρτ(L, f), then we write ρτ(L, f) = ρτ(L, f) = ρτ(L, f), and call ρτ the
Ramsey-Turán density of L with respect to f , ρτ the upper, ρτ the lower Ramsey-Turán
densities, respectively.

It is easy to see that ρτ(L, f) = c is equivalent to RT(n, L, f(n)) = cn2 + o(n2). Some-
times we want to study the case when the bound on the independence number f(n) is
o(g(n)). Formally o(g(n)) is not a function, we shall consider ρτ(L, o(g)) as ρτ(L, g/ω)
where ω(n) is an arbitrary function tending to infinity (slowly). More formally, let

ρτ(L, o(g)) = lim
ε→0

ρτ(L, εg) and ρτ(L, o(g)) = lim
ε→0

ρτ(L, εg).

Again if ρτ(L, o(g)) = ρτ(L, o(g)), then we write ρτ(L, o(g)) = ρτ(L, o(g)) = ρτ(L, o(g)),
and in this case, we write

RT(n, L, o(g(n))) = ρτ(L, o(g))n2 + o
(
n2
)
.

In other words, we use ρτ(L, o(g(n))) in the following way: if ρτ(L, f) ≤ c for every
f(n) = o(g(n)), then ρτ(L, o(g)) ≤ c. If ρτ(L, f) ≥ c for some f(n) = o(g(n)), then
ρτ(L, o(g)) ≥ c.

When we write ρτ(L, f), we use f instead of f(n), since ρτ(L, f(n)) would suggest that
this constant depends on n. If however, we write something like ρτ(L, c

√
n log n), that is

(only) an abbreviation of ρτ(L, h), where h(n) = c
√
n log n, (see e.g. Theorem 1.4). So,

even when we write ρτ(L, f(n)), we are treating f(n) as a function, which means ρτ(L, f(n))
does not depend on n.3

The theory of ρτ(L, f) is very complex, with many open questions. Here we focus on
the case when L is a clique.

Erdős and Sós [1] determined RT(n,K2r+1, o(n)).

3More precisely, f(n) means an “abstract” function f : N→ N, depending on n.
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Theorem 1.3. For every positive integer r,

RT(n,K2r+1, o(n)) =
1

2

(
1− 1

r

)
n2 + o(n2).

The meaning of Theorem 1.3 is that the Ramsey-Turán density of K2r+1 in this case is
essentially the same as the Turán density 1

2
(1−1/r) ofKr+1. In [1], Erdős and Sós proved that

RT(n,K5, c
√
n) ≤ n2/8+o(n2) for every c > 0. 4 They also asked if RT(n,K5, c

√
n) = o(n2)

for some c > 0. One of our main results answers this question.

Theorem 1.4.
RT
(
n,K5, o

(√
n log n

))
= o(n2).

Here, by Construction 2.1, o
(√

n log n
)

is sharp in the sense that

ρτ
(
K5, c

√
n log n

)
≥ 1

2

(
1− 1

2

)
=

1

4
for any c > 1. (1)

Definition 1.5 (Phase Transition). Given a graph L and two functions g(n) ≤ f(n), we
shall say that L has a phase transition from f to g if ρτ(L, g) < ρτ(L, f).

Given a function ϕ(n) → 0, we shall say that L has a ϕ-phase-transition at f if L has
a phase transition from f to ϕf . If L has a ϕ-phase-transition at f for every ϕ tending to
0, then we shall say that L has a strong phase transition at f . Let ϕω,ε(n) = 2−ω(n) log1−ε n.
If there exists an ε > 0 for which L has a ϕω,ε-phase-transition at f for every function ω(n)
tending to infinity, then we shall say that L has a weak phase transition at f .5

For example, Theorem 1.3 shows that K5 has a strong phase transition at n, since, by
Turán’s Theorem, we have ρτ(K5, n) = 3/8. Theorem 1.4 and (1) show that K5 has a strong
phase transition at c

√
n log n for every c > 1.

Actually, every Ks with s > 2 has a strong phase transition at n. More generally, given
a graph G, if χ(G) > 2 and G has an edge e such that χ(G−e) < χ(G), then G has a strong
phase transition at n. On the other hand, let Ks(a1, . . . , as) be the complete s-partite graph
with class sizes a1, . . . , as. Simonovits and Sós [4] showed that if s < a ≤ b, then

ρτ(Ks+1(a, b, . . . , b), o(n)) = ρτ(Ks+1(a, b, . . . , b), n) =
1

2

(
1− 1

s

)
,

which means that Ks+1(a, b, . . . , b) does not have a strong phase transition at f(n) = n.
Clearly, a strong phase transition implies a weak phase transition.

Remark: Here we investigate phase transitions in Ramsey-Turán Theory. In other words,
we try to understand the following questions:

4If Erdős and Sós knew the result of Ajtai, Komlós and Szemerédi [3] on the Ramsey number R(3, n),
then they were able to prove that RT

(
n,K5, o

(√
n log n

))
≤ n2/8 + o

(
n2
)
.

5The strange function 2log
1−ε n is somewhere “halfway” between log n and nc.
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(1) Given a graph L and a very large n, when do we observe crucial drops in the value of
RT(n, L,m) when m is changing (continuously) from n to 2?

(2) For a fixed L, which functions f and g satisfy

lim sup
n→∞

RT(n, L, g(n))

RT(n, L, f(n))
< 1?

In this field there are several constructions providing lower bounds on Ramsey-Turán
functions that are based on constructions corresponding to some “simple, small Ramsey
numbers”. Let R(t,m) be the Ramsey number: the minimum n such that every graph Gn

on n vertices contains a clique Kt or an independent set of size m.
Unfortunately, we do not know Ramsey functions very well. The case t = 3 is well-

described, we know R(3,m) = Θ(m2/ logm), see (11). For t ≥ 4 we have only

Ω

(
m(t+1)/2

(logm)(t+1)/2−1/(t−2)

)
≤ R(t,m) ≤ O

(
mt−1

(logm)t−2

)
, (2)

where the upper bound follows from Ajtai, Komlós and Szemerédi [3] and the lower bound
follows from Bohman and Keevash [5]. It is conjectured that the upper bound is sharp up
to some logm-power factors.

We define the ‘inverse’ function Q(t, n) of R(t,m), i.e., the minimum independence
number of Kt-free graphs on n vertices. It is an inverse function in the sense that if
R(t,m) = n, then Q(t, n) = m. For example, Q(2, n) = n,Q(3, n) = Θ(

√
n log n) and

Ω(n1/3 log2/3 n) ≤ Q(4, n) = O(n2/5 log4/5 n). In general, for t ≥ 3, we know from (2) that

Ω
(
n

1
t−1 (log n)

t−2
t−1

)
≤ Q(t, n) ≤ O

(
n

2
t+1 (log n)1− 2

(t−2)(t+1)

)
. (3)

We study RT(n,Ks,Q(t, f(n))) for various functions f to find phase transitions. Ramsey-
Turán problems with independence number Q(t, f(n)) were also studied earlier in a some-
what different way. Given an integer d ≥ 2, define the d-independence number αd(G) of
G to be the maximum size of a vertex set S for which G[S] contains no Kd. For ex-
ample, the independence number α(G) of G is α2(G). Denote by RTd(n, L, f(n)) the
maximum number of edges of an L-free graph on n vertices with d-independence num-
ber less than f(n). It is easy to see that α(Gn) < Q(d, f(n)) implies αd(Gn) < f(n), so
RT(n, L,Q(d, f(n))) ≤ RTd(n, L, f(n)). Therefore an upper bound on RTd(n, L, f(n)) is
also an upper bound on RT(n, L,Q(d, f(n))). Erdős, Hajnal, Simonovits, Sós and Sze-
merédi [6] gave an upper bound on RTd(n,Ks, o(n)), implying the following theorem.

Theorem 1.6. For any function ω(n) tending to infinity, if 2 ≤ t < s, then

ρτ

(
Ks,Q

(
t,

n

ω(n)

))
≤ s− t− 1

2s− 2
. (4)

Lower bounds on RTd(n,Ks, o(n)) were provided by constructions of Balogh and Lenz [7,
8]. Unfortunately, a lower bound on RTd(n, L, f(n)) provides no lower bound on RT(n, L,
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Q(d, f(n))). For example, Balogh and Lenz [8] gave a construction showing that RT3(n,K5,
f(n)) ≥ n2/16 + o(n2) for some f(n) = o(n); on the other hand, Theorem 1.4 implies that
RT(n,K5,Q(3, f(n))) = o(n2) for any f(n) = o(n).

Note that ρτ(Ks,Q(t, n)/ω(n)) ≤ ρτ(Ks,Q(t, n/ω(n))), so Theorem 1.6 gives an upper
bound on ρτ(Ks,Q(t, n)/ω(n)). Construction 2.1 provides Ks-free graphs with many edges
and small independence number, giving a lower bound on ρτ(Ks,Q(t, n)). Using these two
results, we give conditions on s and t under which ρτ(Ks,Q(t, n)/ω(n)) < ρτ(Ks,Q(t, n))
for any ω(n) tending to infinity, i.e., Ks has a strong phase transition at Q(t, n).

Theorem 1.7. If s− 1 = r(t− 1) + ` with 0 ≤ ` < t− 1, ` < r and 2 ≤ t < s, then Ks has
a strong phase transition at f(n) = Q(t, n).

We have seen that K5 has a strong phase transition at c
√
n log n for any c > 1. It follows

from Theorem 1.7 that every clique Ks with s ≥ 5 has a phase transition at Q(3, n) =
Θ
(√

n log n
)
. On the other hand, s = 9 and t = 4 do not satisfy the condition of Theorem 1.7,

and we can see from Table 1 that K9 does not have a strong phase transition at Q(4, n).
Theorem 1.7 also implies that for any integer K > 0, there exists an s such that Ks has
more than K strong phase transitions. For example, if s = K! + 1, then Ks has a strong
phase transition at Q(t, n) for every t between 2 and K + 1.

We also study weak phase transitions.

Theorem 1.8. If Ks has a phase transition from Q(t, n) to Q(t+ 1, n), then Ks has a weak
phase transition at Q(t, n).

We would like to have a similar result for strong phase transitions. Unfortunately, we
can prove it only by assuming some conditions on Ramsey numbers. There are some famous
conjectures on R(`, n):

Conjecture 1.9 (Folklore). For every integer ` ≥ 3, R(`− 1, n) = o(R(`, n)) as n→∞.

This would immediately follow from the following stronger conjecture.

Conjecture 1.10. For every integer ` ≥ 3, there exist ϑ = ϑ(`) > 0 and N = N(`) > 0
such that if n > N , then

R(`− 1, n) ≤ R(`, n)/nϑ. (5)

Actually, we can formulate a much stronger Conjecture.

Conjecture 1.11. For some constant γ = γ(t),

Q(t, n) ≈ t−1
√
n logγ n,

or at least
t−1
√
n < Q(t, n) < t−1

√
n logγ n.
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Many of our results depend on Conjecture 1.10 and analogous conjectures. For example,
(3) and (5) imply that there exists a ϑ′ such that

R(`− 1,Q(`, n)) ≤ n1−ϑ′ .

We know that Conjecture 1.10 is true for ` = 3, 4, but for larger `’s we are very far from
proving what is conjectured or would be needed for our purposes.

If Conjecture 1.10 is true for ` = t, then we can determine RT(n,Ks,Q(t, n)). Our next
result is an analogue of Theorem 1.3.

Theorem 1.12. If r = b s−1
t−1
c and Conjecture 1.10 is true for ` = t, then

ρτ(Ks,Q(t, n)) =
1

2

(
1− 1

r

)
.

We also prove an extension of Theorem 1.8.

Theorem 1.13. If t ≥ 2, Conjecture 1.10 is true for ` = t and t + 1, and Ks has a phase
transition from Q(t, n) to Q(t+ 1, n), then Ks has a strong phase transition at Q(t, n).

If Conjecture 1.11 is true, then what Theorem 1.13 says is that if there is a drop on the

Ramsey-Turán density while the independence number go down from n
1
t
+o(1) to n

1
t+1

+o(1),
then there is a drop around n

1
t
+o(1).

We also characterize weak phase transitions for cliques.

Theorem 1.14. If Conjecture 1.10 is true for ` = t+ 1 and Ks has a phase transition from
Q(t, n) to Q(t + 1, n), then there exists an ε > 0 such that for every ω(n) → ∞ slowly,
if ϕε(n) = 2−ω(n) log1−ε n, then Ks has a ϕε-phase-transition, i.e., weak phase transition at
Q(t, n), and Ks does not have a phase transition from ϕε(n)Q(t, n) to Q(t+ 1, n).

The rest of the paper is organized as follows. In Section 2 we provide additional history
of Ramsey-Turán type problems. Our aim in general is to determine the phase transitions
for cliques. We summarize our results for small cliques in Section 3, see Table 1, and we
state them in general in Section 4. In Section 5 we provide the main tools for our proofs:
the Dependent Random Choice Lemma and the Hypergraph Dependent Random Choice
Lemma. We prove our main results in Sections 6 and 7, and Section 8 contains some
concluding remarks and open problems.

Remark: Independently of our work, about the same time, Fox, Loh and Zhao [9] studied
the critical window of the phase transitions of K4. Among others, they computed the
dependency of the constants of the Bollobás-Erdős graph, and by introducing a new twist
on the Dependent Random Choice Lemma, they substantially improved the lower bound on
the independence number at the critical point.
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2. History

Let Hk,` denote a “Ramsey” graph on k vertices not containing K`, having the minimum
possible independence number under this condition. The graph Hk,` is sparse, i.e., it has
o(k2) edges, see Theorem 8.1. For Theorem 1.3, Erdős and Sós [1] used Hn/r,3 to construct
a graph Sn to provide the lower bound on ρτ(K2r+1, o(n)). Their idea was that when a
Ramsey-graph Hn/r,3 is placed into each class of a Turán graph Tn,r, we get a K2r+1-free
graph sequence {Sn} with

e(Sn) ≈ e(Tn,r) and α(Sn) = α(Hn/r,3) = o(n). (6)

It is trivial to generalize this idea to give a lower bound on ρτ(Krs+1, o(n)).

Construction 2.1 (Extended/Modified Erdős-Sós Construction).
Let k = bn/rc, take a Turán graph Tn,r with r classes and place an Hk,t+1 into each of its
classes.

It is easy to see that this graph is Krt+1-free, hence

ρτ(Krt+1, α(Hn/r,t+1)) ≥ 1

2

(
1− 1

r

)
. (7)

If Conjecture 1.10 is true for ` = t + 1, then ρτ(Krt+1, α(Hn/r,t+1)) exists and (7) is sharp,
see Corollary 4.7.

Szemerédi [10], using his regularity lemma [11], proved ρτ(K4, o(n)) ≤ 1/8. Bollobás
and Erdős [12] constructed the so-called Bollobás-Erdős graph, one of the most important
constructions in this area, which shows that ρτ(K4, o(n)) ≥ 1/8. Indeed, the Bollobás-Erdős

graph on n vertices is K4-free, with (1
8
+o(1))n2 edges and independence number o(n). Later,

Erdős, Hajnal, Sós and Szemerédi [13] extended these results, determining RT(n,K2r, o(n)):

Theorem 2.2.

RT(n,K2r, o(n)) =
3r − 5

6r − 4
n2 + o

(
n2
)
.

The lower bound is provided by their generalization of the Bollobás-Erdős graph:

Construction 2.3. Fix h =
⌊

4n
3r−2

⌋
and k =

⌊
3n

3r−2

⌋
. Let Bh be a Bollobás-Erdős graph on

h vertices. We take a Bh and a Turán graph Tn−h,r−2, join each vertex of Bh to each vertex
of Tn−h,r−2, and place an Hk,3 into each class of Tn−h,r−2.

Here h was chosen to maximize the number of edges, which is equivalent with making
the degrees (almost) equal. It is easy to see that this graph is K2r-free. Since α(Bh) = o(n)
and α(Hk,3) = o(n), it gives the lower bound of Theorem 2.2.

In the last years, many important, new results were proved on ρτ(K4, o(n)). Let

f(n) = n2−ω(n)
√

logn and g(n) = n2
−o
(√

logn
log logn

)
. (8)
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Sudakov [14] proved that ρτ(K4, f) = 0. Recently, by finding good quantitative estimates
for the relevant parameters of the Bollobás-Erdős graph, Fox, Loh and Zhao [9] proved that
ρτ(K4, g) ≥ 1/8 for g of (8), complementing Sudakov’s result.

Recall that Q(t, n) is the minimum independence number of Kt-free graphs on n vertices.
So we have Q(t+ 1, n/r) = α(Hn/r,t+1), and we can write (7) as

ρτ
(
Krt+1,Q

(
t+ 1,

n

r

))
≥ 1

2

(
1− 1

r

)
=
r − 1

2r
. (9)

In particular, we get the following sharpening of the lower bound of Theorem 1.3:

ρτ
(
K2r+1,Q

(
3,
n

r

))
≥ 1

2

(
1− 1

r

)
=
r − 1

2r
. (10)

Though Q(3, n) = o(n) was sufficient for Theorem 1.3, it is not enough for our purposes.
Fortunately, there exist much more accurate quantitative estimates of Q(3, n), so we can
get more accurate information on ρτ(K2r+1, o(n)). The bound Q(3, n) = Θ

(√
n log n

)
was

proved by Ajtai, Komlós, Szemerédi [3] and Kim [15]. The best known quantitative esti-
mates are proved by Shearer [16], Pontiveros, Griffiths, Morris, Oliveira [17] and Bohman,
Keevash [18]. The bounds are

(1/4− o(1))m2/ logm ≤ R(3,m) ≤ (1 + o(1))m2/ logm and (11)(
1
/√

2− o(1)
)√

n log n ≤ Q(3, n) ≤
(√

2 + o(1)
)√

n log n. (12)

Combining (10) and (12), we have the following relation.6 For any c > 1,

ρτ
(
K6, c

√
n log n

)
≥ ρτ

(
K5, c

√
n log n

)
≥ 1/4. (13)

3. Phase transitions for cliques

If Conjecture 1.10 is true, then the assumptions of all Theorems and Corollaries in
Section 4 also hold. In this section, we assume Conjecture 1.10 is true and study phase
transitions of cliques. We summarize our results in Section 4 by listing ρτ(Ks, f) for s ≤ 13
in Table 1, which makes our results easier to understand. The first row f(n) = n is Turán’s
theorem, the second row o(n) is Theorem 1.3 if s is odd, and Theorem 2.2 if s is even. In
general we have three types of functions f(n):

1. Q(t, n): Bounds are obtained by Construction 2.1.

2. Q
(
t, n
ω(n)

)
:

• s = 2t− 1: Bounds are obtained by Theorem 4.2.
• s = 2t: Bounds are obtained by Corollary 4.10.

6Essentially this appears in Erdős-Sós [1].
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• t divides s− 1: Bounds are obtained by Corollary 4.11.
• other cases: Bounds are obtained by Theorem 1.6.

3. Q(t, gq(n)) where gq(n) = n2−ω(n) log1−1/q n:

• t does not divide s: Bounds are obtained by Corollary 4.4.
• s = 2t: Bounds are obtained by Theorem 4.5.
• s = qt, q ≥ 3: Bounds are obtained by Corollary 4.7.

Note that under the assumption that Conjecture 1.10 is true, our results for f(n) =

Q
(
t, n
ω(n)

)
can be viewed as results on ρτ(Ks, o(Q(t, n))). Conjecture 1.10 is true for ` = 3, 4,

therefore, our results on K4, . . . , K8 and results in Row 1 to Row 7 do not depend on
Conjecture 1.10.

An entry “λ” in the row f(n) and the column Ks means ρτ(Ks, f) = λ, and “≤ λ”
means ρτ(Ks, f) ≤ λ. In the row Q(t, gq(n)), the entries are “q0 : λ” meaning that
ρτ(Ks,Q(t, gq0)) = λ.

Unfortunately, we know only a few equalities for the case f(n) = Q
(
t, n
ω(n)

)
. The

inequality results, especially the inequalities obtained by Theorem 1.6, are unlikely to be
sharp. In some small cases we could improve the upper bounds, but we do not feel that we
captured the truth and we shall discuss these partial results somewhere else.

The most interesting case is K6. A construction improving the lower bound on ρτ
(
K6,

o
(√

n log n
))

would imply several improvements in the spirit of Construction 2.3, i.e., then
we would replace the Bollobás-Erdős graph in Construction 2.3 with this new construction
for K6, replace Hk,3 with Hk,4, and then optimize the class sizes.

Example: We list the details for K13 here. Let ω(n) be any function tending to infinity.
The extremal number of K13 with no restriction on the independence number is 11n2/24,

realized by the complete 12-partite Turán graph. Below we shall use Q(t, n)
RC∼ t−1

√
n to

indicate that we assume Conjecture 1.11. When the independence number f(n) is restricted
by f(n) = o(n) or more precisely to Q(3, n), we have that ρτ(K13, f) drops to 5/12, realized

by Construction 2.1. When f(n) is between Q(4, n)
RC∼ 3
√
n and Q

(
3, n

ω(n)

)
∼
√
n, Corol-

laries 4.4 and 4.11 show that ρτ(K13, f) = 3/8. When f(n) is between Q(5, n)
RC∼ 4
√
n and

Q
(

4, n
ω(n)

)
RC∼ 3
√
n, Corollaries 4.4 and 4.11 show that ρτ(K13, f) = 1/3. When f(n) drops

to Q
(

5, n
ω(n)

)
RC∼ 4
√
n, Theorem 1.6 shows that ρτ(K13, f) ≤ 7/24. When f(n) is between

Q(7, n)
RC∼ 6
√
n and Q(5, n2−ω(n)

√
logn)

RC∼ 4
√
n, Corollary 4.4 yields that ρτ(K13, f) = 1/4.

Finally, when the independence number f(n) is restricted by f(n) ≤ Q
(

7, n
ω(n)

)
, Theo-

rem 4.2 implies that ρτ(K13, f) drops to 0.

4. General Results

First we state one of our main results, Theorem 1.4, in a sharper form.
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K4 K5 K6 K7 K8 K9 K10 K11 K12 K13

1 n
1

3

3

8

2

5

5

12

3

7

7

16

4

9

9

20

5

11

11

24

2 o(n)
1

8

1

4

2

7

1

3

7

20

3

8

5

13

2

5

13

32

5

12

3 gq(n) 2 : 0 3 :
1

4
4 :

1

3
5 :

3

8
6 :

2

5

4 Q(3, n)
1

4

1

4

1

3

1

3

3

8

3

8

2

5

2

5

5

12

5 o
(√

n log n
)

0 ≤ 1

6

1

4
≤ 2

7
≤ 5

16

1

3
≤ 7

20
≤ 8

22

3

8

6 Q(3, gq(n)) 2 : 0 2 :
1

4
3 :

1

4
3 :

1

3
4 :

1

3

7 Q(4, n)
1

4

1

4

1

3

1

3

1

3

3

8

8 Q

(
4,

n

ω(n)

)
0 ≤ 3

16
≤ 5

18
≤ 3

10
≤ 7

22

1

3

9 Q(4, gq(n)) 2 : 0 2 :
1

4
2 :

1

4
3 :

1

4

10 Q(5, n)
1

4

1

4

1

3

11 Q

(
5,

n

ω(n)

)
0 ≤ 1

5
≤ 7

24

12 Q(5, gq(n)) 2 : 0 2 :
1

4

13 Q(6, n)
1

4

1

4

14 Q

(
6,

n

ω(n)

)
0 ≤ 5

24

15 Q(6, gq(n)) 2 : 0

16 Q(7, n)
1

4

17 Q

(
7,

n

ω(n)

)
0

Table 1: Phase Transitions.
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Theorem 4.1. If ω(n)→∞, then

RT

(
n,K5,

√
n log n

ω(n)

)
≤ n2

4
√
ω(n)

= o
(
n2
)
. (14)

We use Q(t, n/ω(n)) as a bound on the independence number to generalize Theorem 4.1.

Theorem 4.2. Suppose p ≥ 3. If ω(n) → ∞ and there exists a constant ϑ > 0 such that
for every n sufficiently large, we have

R

(
p− 1,Q

(
p,

n

ω(n)

))
< n1−ϑ, (15)

then RT

(
n,K2p−1,Q

(
p,

n

ω(n)

))
≤ n2

ω(n)
ϑ
2p

= o
(
n2
)
.

Remark: It is known that condition (15) of Theorem 4.2 is satisfied for p = 3, 4 as
R(2,Q(3, n/ω(n))) = o

(√
n log n

)
and R(3,Q(4, n/ω(n))) = o(n4/5 log3/5 n). For a p satisfy-

ing condition (15), Theorem 4.2 is best possible in the sense that ρτ(K2p−1,Q(p, n/2)) ≥ 1/4,
as we know from (9).

We generalize Theorem 4.2 from cliques of odd size to many other sizes.

Theorem 4.3. Suppose p ≥ 3 and q ≥ 2. Let ω(n)→∞ and f(n) = n2−ω(n) log
q−2
q−1 n. If there

exists a constant ϑ > 0 such that for every n sufficiently large, we have R(p− 1,Q(p, f(n))) <
n1−ϑ, then

ρτ(Kpq−1,Q(p, f)) ≤ q − 2

2q − 2
.

Remark: Substituting q = 2 into Theorem 4.3, we get Theorem 4.2.

Corollary 4.4. Suppose p ≥ 3 and q ≥ 2. Let ω(n) → ∞ and f(n) be as in Theorem 4.3.

For 1 ≤ i ≤ p− 1, let t =
⌊
pq−i−1
q−1

⌋
≥ p. If there exists a constant ϑ > 0 such that for every

n sufficiently large, we have

R(p− 1,Q(p, f(n))) < n1−ϑ, (16)

then for

Q

(
t+ 1,

n

q − 1

)
< g(n) < Q(p, f(n)), (17)

we have

ρτ(Kpq−i, g) =
q − 2

2q − 2
.

11



Proof of Corollary 4.4. The upper bound is obvious from Theorem 4.3. Let r = q−1,
then rt+ 1 ≤ pq− i, so the lower bound is realized by (9) with the parameters r, t as above:

ρτ

(
Kpq−i,Q

(
t+ 1,

n

q − 1

))
≥ ρτ

(
Krt+1,Q

(
t+ 1,

n

r

))
≥ q − 2

2q − 2
.

Similarly to Theorem 4.2, condition (16) of Corollary 4.4 probably is satisfied for every
p, but this is not known. We know it for p = 3, 4. The left end of the interval given by (17)
is likely smaller than the right end for every p, but again it is not known. We know it for
p = 2, 3.

Recall that Sudakov proved that ρτ
(
K4, n2−ω(n)

√
logn
)

= 0, which is a special case of his

more general theorem [14]:

Theorem 4.5 (Sudakov). Let t ≥ 2 and ω(n) → ∞. If g(n) = Q
(
t, n2−ω(n)

√
logn
)

, then

ρτ(K2t, g) = 0.

We extend Theorem 4.5 from K2t to Kpq, with several other functions g(n). Theorem 4.6
can be compared to Theorem 4.3, where similar statement was proved for Kpq−1 and a
slightly larger f(n).

Theorem 4.6. Suppose p ≥ 2 and q ≥ 2. Let ω(n)→∞ and

f(n) = n2−ω(n) log1−1/q n. Then ρτ(Kpq,Q(p, f)) ≤ q − 2

2q − 2
.

Remark: Applying Theorem 4.6 with p = t and q = 2, we obtain Theorem 4.5.

Corollary 4.7. Suppose p ≥ 2 and q ≥ 2. Let ω(n) → ∞ and f(n) be as in Theorem 4.6.

For 0 ≤ i ≤ p− 1, let t =
⌊
pq−i−1
q−1

⌋
≥ p. If

Q

(
t+ 1,

n

q − 1

)
≤ g(n) ≤ Q(p, f(n)), then ρτ(Kpq−i, g) =

q − 2

2q − 2
.

Proof of Corollary 4.7. We apply Theorem 4.6 to get the upper bound. Let r = q−1,
which implies rt+ 1 ≤ pq− i, so the lower bound is realized by (9) with the parameters r, t
as above:

ρτ
(
Kpq−i,Q

(
t+ 1,

n

r

))
≥ ρτ

(
Krt+1,Q

(
t+ 1,

n

r

))
≥ q − 2

2q − 2
.

Theorem 4.2 determines ρτ
(
K2t−1,Q

(
t, n
ω(n)

))
. Now we consider the even-size clique

case ρτ
(
K2t,Q

(
t, n
ω(n)

))
. This case was studied by Erdős, Hajnal, Simonovits, Sós and

Szemerédi [6]. They proved an upper bound for t = 3.

12



Theorem 4.8. If ω(n)→∞, then

RT

(
n,K6,Q

(
3,

n

ω(n)

))
≤ n2

6
+ o
(
n2
)
.

Using similar methods, one can prove the following general result.

Theorem 4.9. Let ω(n) → ∞ and f(n) = n2−ω(n) log1−1/q n. If 2t ≤ pq and Q
(
t, n
ω(n)

)
≤

Q(p, f(n)), then

ρτ

(
K2t,Q

(
t,

n

ω(n)

))
≤ (t− 1)(q − 2)

2t(q − 1)
.

Applying this with t = 3, p = 2 and q = 3, then we obtain Theorem 4.8. This is a special
case of the following Corollary:

Corollary 4.10. For t ≥ 3, if Q
(
t, n
ω(n)

)
≤ Q

(
t− 1, n2−ω(n) log2/3 n

)
, then

ρτ

(
K2t,Q

(
t,

n

ω(n)

))
≤ t− 1

4t
.

Proof. The condition t ≥ 3 implies 2t ≤ 3(t−1), therefore we can apply Theorem 4.9 with
p = t− 1 and q = 3.

Remark: It is known that the condition of Corollary 4.10 is satisfied for t = 3, 4. Unfortu-

nately, it is not known if ρτ
(
K2t,Q

(
t, n
ω(n)

))
exists.

Now we consider the general case. Using Theorem 1.6 and (9), we get the following
corollary.

Corollary 4.11. Suppose p, q ≥ 2. Let ω(n)→∞. If Q(p+ 1, n/q) ≤ Q
(
p, n

ω(n)

)
, then

ρτ

(
Kpq+1,Q

(
p,

n

ω(n)

))
=
q − 1

2q
.

Proof. The upper bound follows from Theorem 1.6 with s = pq + 1 and t = p. The lower
bound follows from (9) with r = q and t = p:

ρτ

(
Kpq+1,Q

(
p+ 1,

n

q

))
≥ q − 1

2q
.

Now it is straightforward to see why Theorems 1.7, 1.8, 1.12, 1.13 and 1.14 are true.
Theorem 1.6 and Construction 2.1 imply Theorem 1.7.
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Proof of Theorem 1.7. Under the conditions of Theorem 1.7, using Theorem 1.6 and
Construction 2.1, we have the following inequality:

ρτ

(
Ks,Q

(
t,

n

ω(n)

))
≤ s− t− 1

2s− 2
<
r − 1

2r
≤ ρτ(Ks,Q(t, n)).

Trivially, Q(t,n)
ω(n)

≤ (1 + o(1))Q
(
t, n
ω(n)

)
. Therefore,

ρτ

(
Ks,

Q(t, n)

ω(n)

)
≤ ρτ

(
Ks,Q

(
t,

n

ω(n)

))
< ρτ(Ks,Q(t, n)).

We use Theorem 4.6 to prove Theorem 1.8.

Proof of Theorem 1.8. Let r =
⌊
s−1
t

⌋
and f(n) = n2−ω(n) log

r
r+1 n. To prove Theorem 1.8,

we need that
ρτ(Ks,Q(t, f)) < ρτ(Ks,Q(t, n)). (18)

We know that Ks has a phase transition from Q(t, n) to Q(t+1, n), i.e., ρτ(Ks,Q(t+1, n)) <
ρτ(Ks,Q(t, n)). Therefore, to prove (18), it is sufficient to show that for n→∞, we have

RT(n,Ks,Q(t, f(n))) ≤ RT(n,Ks,Q(t+ 1, n)) + o
(
n2
)
. (19)

We may assume Q(t + 1, n) ≤ Q(t, f(n)) since otherwise we immediately have (19). Then,
by rt+1 ≤ s ≤ t(r+1), we can use Construction 2.1 with r and t as above and Theorem 4.6
with p = t and q = r + 1 to obtain that

r − 1

2r
≤ ρτ(Ks,Q(t+ 1, n)) ≤ ρτ(Ks,Q(t, f)) ≤ r − 1

2r
.

Hence ρτ(Ks,Q(t, f)) = ρτ(Ks,Q(t+ 1, n)), proving (19).

Corollary 4.7 immediately yields Theorems 1.12 and 1.14.

Proof of Theorem 1.12. Let p = t− 1 and q = r + 1. Note that p(q − 1) + 1 ≤ s ≤ pq,
so by Corollary 4.7 we get the desired result.

Proof of Theorem 1.14. If Conjecture 1.10 is true for ` = t + 1, then for every ε > 0,
we have

Q(t+ 1, n) ≤ ϕε(n)Q(t, n) ≤ Q(t, ϕε(n)n), (20)

where the second inequality holds by the definition of Q(t, n). Let r = b(s− 1)/tc and
ε = r

r+1
. Using the proof of Theorem 1.8 (or Corollary 4.7 with p = t and q = r + 1), we

know that
ρτ(Ks,Q(t+ 1, n)) = ρτ(Ks,Q(t, ϕε(n)n)). (21)

Now combining (20) and (21), we have

ρτ(Ks,Q(t+ 1, n)) = ρτ(Ks, ϕε(n)Q(t, n)),
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which implies the desired result.

Theorems 1.6 and 1.12 yield Theorem 1.13.

Proof of Theorem 1.13. Assume r = b(s− 1)/tc, so s < (r + 1)t+ 1, and therefore we
have

s− t− 1

2s− 2
<

(r + 1)t+ 1− t− 1

2((r + 1)t+ 1− 1)
=

r

2r + 2
. (22)

By Theorem 1.12 (here our t is t− 1 in Theorem 1.12), we know that

ρτ(Ks,Q(t+ 1, n)) =
r − 1

2r
.

Then by Theorem 1.12 and the condition ρτ(Ks,Q(t+ 1, n)) < ρτ(Ks,Q(t, n)), we have for
some r′ ≥ r that

ρτ(Ks,Q(t, n)) =
r′

2r′ + 2
≥ r

2r + 2
. (23)

Now combining Theorem 1.6, (22) and (23), we have

ρτ

(
Ks,Q

(
t,

n

ω(n)

))
≤ s− t− 1

2s− 2
<

r

2r + 2
≤ ρτ(Ks,Q(t, n)).

By definition of Q(t, n), it is easy to see that Q(t,n)
ω(n)

≤ Q
(
t, n
ω(n)

)
, thus

ρτ

(
Ks,

Q(t, n)

ω(n)

)
≤ ρτ

(
Ks,Q

(
t,

n

ω(n)

))
< ρτ(Ks,Q(t, n)).

5. Tools

The method of Dependent Random Choice was developed by Füredi, Gowers, Kostochka,
Rödl, Sudakov, and possibly many others. The next lemma is taken from Alon, Krivelevich
and Sudakov [19].

Lemma 5.1. (Dependent Random Choice Lemma)
Let a, d,m, n, r be positive integers. Let G = (V,E) be a graph with n vertices and average

degree d = 2e(G)/n. If there is a positive integer t such that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ a, (24)

then G contains a subset U of at least a vertices such that every r vertices in U have at least
m common neighbors.

Conlon, Fox, and Sudakov [20] extended Lemma 5.1 to hypergraphs. The weight w(S)
of a set S of edges in a hypergraph is the number of vertices in the union of these edges.

15



Lemma 5.2. (Hypergraph Dependent Random Choice Lemma).
Suppose s,∆ are positive integers, ε, δ > 0, and Gr = (V1, . . . , Vr;E) is an r-uniform

r-partite hypergraph with |V1| = . . . = |Vr| = N and at least εN r edges. Then there exists
an (r − 1)-uniform (r − 1)-partite hypergraph Gr−1 on the vertex sets V2, . . . , Vr which has
at least εs

2
N r−1 edges and such that for each nonnegative integer w ≤ (r− 1)∆, there are at

most 4r∆ε−sβswr∆rwNw dangerous sets of edges of Gr−1 with weight w, where a set S of
edges of Gr−1 is dangerous if |S| ≤ ∆ and the number of vertices v ∈ V1 such that for every
edge e ∈ S, e+ v ∈ Gr is less than βN .

6. Proofs of Theorems 4.1 and 4.2

Here we first provide two proofs of Theorem 4.1 using Lemma 5.1. The structures of
these two proofs are similar, but we use Lemma 5.1 in somewhat different ways. We suppose
that there exist K5-free graphs Gn with e(Gn) > εn2 for any n sufficiently large. Next we
use Lemma 5.1 to find a K5 in Gn. Both proofs show that e(Gn) = o(n2), but Proof I gives
a better bound.

From (12) we know that every triangle-free graph Gn contains an independent set of size
at least

(
1
/√

2− o(1)
)√

n log n. We will use this in both proofs.

Proof I of Theorem 4.1. Let εn = ω(n)−1/4. Assume that there is a K5-free graph Gn

with

e(Gn) ≥ εnn
2 and α(Gn) <

√
n log n

ω(n)
. (25)

We apply Lemma 5.1 to Gn with

a =
4n

ω(n)2
, r = 3, d = 2εnn, m =

√
n log n and t = 7.

Now the condition of Lemma 5.1, (24) is satisfied as

dt

nt−1
−
(
n

r

)(m
n

)t
≥ (2εn)7n− n3

(
log n

n

)7/2

> ε7
nn ≥

n

ω(n)7/4
> a.

So there exists a vertex subset U of G with |U | = a = 4n/ω(n)2 such that all subsets
of U of size 3 have at least m common neighbors. Either U has an independent set of size

at least
(

1√
2
− o(1)

)√
4n

ω(n)2
log
(

4n
ω(n)2

)
> α(Gn), or Gn[U ] contains a triangle. In the latter

case, denote by W the common neighborhood of the vertices of this triangle. It follows that
|W | ≥ m =

√
n log n > α(Gn), so Gn[W ] contains an edge, and this edge forms a K5 with

the triangle.

Proof II of Theorem 4.1. Let εn = log log(ω(n)/2)
log(ω(n)/2)

. Assume (25) again. We shall apply
Lemma 5.1 to Gn with

a =

√
n log n

ω(n)
, r = 2, d = 2εnn, m =

4n

ω(n)2
and t =

log n

log(ω(n)/2)
.
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Now when n, and hence ω(n) is sufficiently large, we have

dt

nt−1
= (2εn)tn = n · 2− log( 1

2εn
)· logn

log(ω(n)/2) > n1−εn and

(
ω(n)

2

)2t

= 22 log(ω(n)
2 )· logn

log(ω(n)/2) = n2,

yielding that (24) is satisfied:

dt

nt−1
−
(
n

r

)(m
n

)t
≥ n1−εn − n2

2n2
> a.

This means that there is a vertex subset U of Gn with |U | = a such that every pair of
vertices in U has at least m common neighbors. We chose a > α(Gn), so Gn[U ] contains
an edge u1u2. Let W := N(u1) ∩ N(u2). Since Gn is K5-free, Gn[W ] does not contain a
triangle. Then W contains an independent set of size at least

(
1
/√

2− o(1)
)√
|W | log |W | ≥(

1
/√

2− o(1)
)√

m logm > α(Gn).

The proof of Theorem 4.2 is very similar to the first proof of Theorem 4.1.

Proof of Theorem 4.2. Let

r = p, t = 2p/ϑ, εn = ω(n)−1/t, a = n/ω(n),

d = 2εnn and m = R(p− 1,Q(p, n/ω(n))) < n1−ϑ.

Assume that there is a K2p−1-free graph Gn with e(Gn) ≥ εnn
2 and α(Gn) < Q

(
p, n

ω(n)

)
.

We check (24), i.e., that

dt

nt−1
−
(
n

r

)
mt

nt
≥ (2εn)tn− nr · n−ϑt > εtnn = a.

Therefore, we can apply Lemma 5.1 to Gn with the parameters a, d,m, n, r, t as above to
find a U ⊂ V (Gn) with |U | = a such that all subsets of U of size r have at least m common
neighbors. The set U does not contain an independent set of size Q(p, n/ω(n)), so Gn[U ]
contains a Kp. Denote by W the common neighborhood of the vertices of this Kp. It follows
that |W | ≥ m. Then since Gn[W ] does not contain an independent set of size Q(p, n/ω(n)),
it contains a Kp−1, which together with Kp forms a K2p−1.

7. Proofs of Theorems 4.6 and 4.9

The proofs of Theorems 4.3 and 4.6 are very similar, therefore the proof of Theorem 4.3
is put into the Appendix.

We start by sketching the proof of Theorem 4.6. Suppose that Gn has more than(
q−2
q−1

+ δ
)
n2

2
edges and is Kpq-free, then we apply Szemerédi’s Regularity Lemma to Gn

and find a Kq in the cluster graph Rk (see below). Let V1, . . . , Vq be the vertices of a q-clique
in the cluster graph. We use Lemma 5.1 to find a K2p in Vq−1 ∪ Vq and use Lemma 5.2 to
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find a Kp in each Vi for 1 ≤ i ≤ q − 2 such that these cliques together form a Kpq in Gn.
The details are below.

Proof of Theorem 4.6. Suppose to the contrary that there is a Kpq-free graph Gn with
n sufficiently large,

e(Gn) ≥
(
q − 2

q − 1
+ δ

)
n2

2
and α(Gn) < Q(p, f(n)).

We apply Szemerédi’s Regularity Lemma to Gn with regularity parameter ρ = δ/22q to
get a cluster graph Rk on k vertices where the vertices of Rk are the clusters of the Szemerédi
Partition, and adjacent if the pair is ρ-regular and has density at least δ/2. It is standard

to check that the number of edges of Rk is at least
(
q−2
q−1

+ δ
2

)
k2

2
. So, by Turán’s Theorem

Rk contains a Kq, and by Claim 7.1, we can find a Kpq in Gn, a contradiction.
To complete the proof, it is sufficient to prove the following assertion.

Claim 7.1. If α(Gn) < Q
(
p, n2−ω(n) log1−1/q n

)
and there exists a Kq in a cluster graph of

Gn, then we can find a Kpq in Gn.

There exist q vertices in Rk, denoted by V1, . . . , Vq, that induce a Kq. We define a q-
uniform q-partite hypergraph H0 whose vertex set is

⋃
Vi and edge set E(H0) is the family

of q-sets that span q-cliques in Gn and contain one vertex from each of V1, . . . , Vq. Let

N = |Vi| = n/k, then by the counting lemma, |E(H0)| ≥ ε0N
q, where ε0 > (δ/3)(

q
2). Let

β = f(n)/N, s = log
1
q n, εi = εlog

i
q n

0 2−
si−1
s−1 , ri = q − i, ∆i = pri and wi = pri.

We start from H0. For 1 ≤ i ≤ q − 2 we apply Lemma 5.2 to H i−1 with ∆ = ∆i, ε =
εi−1, r = ri−1 and w = wi to get H i. Note that ∆, ε0, r, w and k are all constants. It is easy
to check that for 1 ≤ i ≤ q − 2, we have

4r∆ε−sβswr∆rwNw = O

(
22 log

i−1
q nε− log

i
q n

0 klog
1
q n2−ω(n) lognNw

)
= O(n−ω(n)/2) = o(1) < 1.

Then by Lemma 5.2 there exists an ri-uniform ri-partite hypergraph H i on the vertex sets
Vi+1, . . . , Vq that contains at least εiN

ri edges and contains no dangerous sets of ∆i edges
on wi vertices (Recall that a set S of ∆i edges on wi vertices is dangerous if the number
of vertices v ∈ Vi such that for every edge e ∈ S, e + v ∈ H i−1 is less than βN). Now we
have a hypergraph sequence {H`}q−2

`=0 . We will prove by induction on i that there is a p-set

Aq−` ⊂ Vq−` for 0 ≤ ` ≤ i such that Gn

[
Aq−`

]
= Kp and Hq−i−1

[⋃i
`=0A

q−`
]

is complete

rq−i−1-partite. Note that if a vertex set T is an edge of H0, then Gn[T ] is a q-clique. So
Gn

[⋃q−1
`=0 A

q−`] = Kpq, which will prove Claim 7.1.
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We first show that the induction hypothesis holds for i = 1. Note that rq−2 = 2, so Hq−2

is a bipartite graph on 2N vertices with at least εq−2N
2 edges. We now apply Lemma 5.1

to Hq−2 with

a = 2βN, d = εq−2N, t = s, r = p and m = βN.

We check condition (24):

(εq−2N)s

(2N)s−1
−
(

2N

p

)(
βN

2N

)s
≥ (ε0/2)log1−1/q nN − npks2−ω(n) logn

= (ε0/2)log1−1/q nN − o(1) ≥ 2βN.

Therefore we have a subset U of Vq−1 ∪ Vq with |U | = 2βN such that every p vertices in
U have at least βN common neighbors in Hq−2. Either Vq−1 or Vq contains at least half of
the vertices of U , so w.l.o.g. we may assume that U ′ = U ∩ Vq−1 contains at least βN = m
vertices. Because α(Gn) < Q(p,m), the vertex set U ′ contains a p-vertex set Aq−1 such
that Gn[Aq−1] = Kp. The vertices of Aq−1 have at least m common neighbors in Vq, so their
common neighborhood also contains a p-vertex subset Aq of Vq such that Gn[Aq] = Kp. Now
Hq−2[Aq−1 ∪ Aq] is complete bipartite. We are done with the base case i = 1.

For the induction step, assume that the induction hypothesis holds for i − 1, then we
can find a complete rq−i-partite subhypergraph H̃q−i of Hq−i spanned by

⋃i−1
`=0 A

q−`, where
Gn[Aq−`] = Kp for every `. The hypergraph Hq−i has no dangerous set of ∆q−i edges on wq−i
vertices, and H̃q−i contains pi = wq−i vertices and pi = ∆q−i edges, so H̃q−i is not dangerous.

Then we can find a set B of βN vertices in Vq−i such that for every edge e ∈ H̃q−i and every

vertex v ∈ B, e + v ∈ Hq−i−1, which means Hq−i−1
[
B ∪

⋃i−1
`=0 A

q−`
]

is complete rq−i−1-

partite. Then, because α(Gn) < Q(p, βN), we can find a p-vertex subset Aq−i of B such
that Gn[Aq−i] = Kp.

The proof of Theorem 4.9 is a combination of Claim 7.1 and an easy application of
Szemerédi’s Regularity Lemma, (see the Appendix of Balogh-Lenz [8] for similar proofs).
The idea is that instead of proving only that the cluster graph is Kq-free, like in the proof
of Theorem 4.6, we also bound the density of regular pairs.

Proof of Theorem 4.9. Given ε > 0, let ρ = ε/22t and M = M(ρ) > 1/ρ be the
upper bound on the number of partitions guaranteed by Szemerédi’s Regularity Lemma
with regularity parameter ρ. Suppose we have a K2t-free graph Gn with

e(Gn) ≥
(

(t− 1)(q − 2)

t(q − 1)
+ ε

)
n2

2
and α(Gn) < Q

(
t,
εn

M

)
.

We apply Szemerédi’s Regularity Lemma to Gn with regularity parameter ρ to get a cluster
graph Rk on k ≤M vertices where two vertices are adjacent if the pair is ρ-regular and has

density at least ε/2. It is standard to check that more than
(

(t−1)(q−2)
t(q−1)

+ ε
2

)
n2

2
edges of Gn

are between pairs of classes that are ρ-regular and have density at least ε/2.
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Assume that the density d of a ρ-regular pair (Vi, Vj) is at least t−1
t

+ε. Because α(Gn) <
Q(t, εn/M) and |Vi| ≥ εn/M , there is a t-clique in Vi, each of whose vertices has at least
(d − ρ)|Vj| ≥ ( t−1

t
+ ε

2
)|Vj| neighbors in Vj, hence vertices of this t-clique have at least

ε|Vj| common neighbors. Then we can find a t-clique in their common neighborhood since
α(Gn) < Q(t, εn/M) and ε|Vj| ≥ εn/M . Thus we find a K2t in Gn, a contradiction.
Therefore the density of any ρ-regular pair is at most t−1

t
+ ε. Then Rk has at least(

(t− 1)(q − 2)

t(q − 1)
+
ε

2

)
n2

2
·
((

t− 1

t
+ ε

)(n
k

)2
)−1

>

(
q − 2

q − 1
+
ε

4

)
k2

2

edges, so there is a Kq in Rk. Then, by Claim 7.1, there is a Kpq in Gn, which is a
contradiction.

8. Concluding remarks and open problems

First, using the Dependent Random Choice Lemma, we prove that K`-free graphs with
small independence number are sparse.

Theorem 8.1. Let ` ≥ 3 be an integer and s = d`/2e. Fix a positive constant c < 1
s(s−1)

.
Let Gn,` be a graph on n vertices not containing K`.

If α(Gn,`) < Q(`, n)nc, then e(Gn,`) = o(n2).

Proof. The general bound (2) on Ramsey numbers implies that there exists a constant
ϑ > 0 (depending on ` and c) such that R(s,Q(`, n)nc) < n1−ϑ. Assume that G = Gn,` has
more than εn2 edges and ε > n−ϑ

2/2s. We apply Lemma 5.1 to G with

r = s, d = 2εn, t = 2s/ϑ and a = m = R(s,Q(`, n)nc).

Now the condition of Lemma 5.1, (24) is satisfied as

dt

nt−1
−
(
n

r

)
mt

nt
> (2ε)tn− ns · n−ϑ·2s/ϑ > εtn > n1−ϑ2

2s
· 2s
ϑ > a.

Therefore we can use Lemma 5.1 (with the parameters a, d,m, r, t as above) to find a vertex
subset U of G with |U | = a such that all subsets of U of size r have at least m common
neighbors. The set U does not contain an independent set of size Q(`, n)nc, so Hn,`[U ]
contains a Ks. Denote by W the common neighborhood of the vertices of this Ks. It follows
that |W | ≥ m. Then Hn,`[W ] also contains a Ks, which together with the Ks found in
Hn,`[U ] forms a K2s.

Next we propose some problems. We proved that ρτ
(
K5, o

(√
n log n

))
= 0, and it was

known that ρτ(K5,Q(3, n/2)) = 1/4. It would be interesting to know if there is any sharper
transition of K5 at c ·Q(3, n/2) for c < 1, hence it is natural to propose the following two
problems:
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Question 8.2. Determine RT(n,K5, (1− ε)Q(3, n/2)).

Question 8.3. Determine RT(n,K5, c ·Q(3, n/2)) for 0 < c < 1.

We proved that if Conjecture 1.10 is true, then ρτ(K2t, o(Q(t, n))) ≤ t−1
4t
. Note that

the Bollobás-Erdős graph gave matching lower bound for t = 2, so finding constructions
to give matching lower bounds on ρτ(K2t, o(Q(t, n))) could be a very challenging problem.
Probably a construction, if exists, is an extension of the Bollobás-Erdős graph. There are
generalizations of the Bollobás-Erdős graph in [6–8, 21]. The simplest open case is stated
below:

Question 8.4. Determine ρτ
(
K6, o

(√
n log n

))
and ρτ

(
K6, o

(√
n log n

))
.

We have 1/6 as an upper bound. Sudakov proved that ρτ(K6, f) = 0 for f(n) =

Q
(

3, n2−ω(n)
√

logn
)

, but it is not clear what happens when f(n) is between Q
(

3, n2−ω(n)
√

logn
)

and o
(√

n log n
)
. In particular, we would like to know the answer to the following question:

Question 8.5. At which function f(n) does K6 have a strong phase transition to 0, i.e.,
0 = ρτ(K6, o(f)) < ρτ(K6, f)?

Another surprising phenomenon is that ρτ(K4, o(
√
n log n)) = 0 = ρτ(K5, o(

√
n log n)).

We know that ρτ(K6, o(
√
n log n)) ≤ 1/6 < 1/4 = ρτ(K7, o(

√
n log n)). It would be interest-

ing to know if

ρτ
(
K7, o

(√
n log n

))
= ρτ

(
K8, o

(√
n log n

))
.

Appendix A. Proof of Theorem 4.3

This proof is very similar to that of Theorem 4.6 in Section 7, so we skip some details.
Suppose to the contrary that there is a Kpq−1-free graph Gn with n sufficiently large,

e(Gn) ≥
(
q − 2

q − 1
+ δ

)
n2

2
and α(Gn) < Q(p, f(n)).

Just as what we did in the proof of Theorem 4.6, we apply Szemerédi’s Regularity Lemma
to Gn with regularity parameter ρ = δ/22q to get a cluster graph R on k vertices. Similarly
to the proof of Theorem 4.6, we can find q vertices V1, . . . , Vq that span a Kq in R. Now
consider a q-uniform q-partite hypergraph H0 whose vertex set is

⋃
Vi and edge set E(H0) is

the family of q-sets that span q-cliques in Gn and contain one vertex from each of V1, . . . , Vq.

Let N = |Vi| = n/k, then by the counting lemma, |E(H0)| ≥ ε0N
q, where ε0 > (δ/3)(

q
2).

Let

β = f(n)/N, s = log
1

q−1 n, εi = εs
i

0 /2
si−1
s−1 , ri = q − i, wi = pri − 1 and ∆i = pri−1(p− 1).
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We start from H0. For 1 ≤ i ≤ q − 2 we apply Lemma 5.2 to H i−1 with ∆ = ∆i, ε =
εi−1, r = ri−1 and w = wi to get H i. It is easy to check that for 1 ≤ i ≤ q − 2, we have

4r∆ε−sβswr∆rwNw = O

(
22 log

i−1
q−1 nε− log

i
q−1 n

0 ks2−ω(n) lognNw

)
= O(n−ω(n)/2) = o(1) < 1.

Then by Lemma 5.2 there exists an ri-uniform ri-partite hypergraph H i on the vertex sets
Vi+1, . . . , Vq that contains at least εiN

ri edges and contains no dangerous set of ∆i edges on
wi vertices.

Note that rq−2 = 2, so Hq−2 is a bipartite graph on 2N vertices with at least εq−2N
2

edges. We now apply Lemma 5.1 to Hq−2 with

a = 2βN, d = εq−2N, t = 2p/ϑ, r = p and m = R(p− 1,Q(p, f(n))).

Note that m < n1−ϑ. We check condition (24):

(εq−2N)t

(2N)t−1
−
(

2N

p

)( m
2N

)t
≥ (ε0/2)t log

q−2
q−1 nN − npktn−2p

= (ε0/2)t log
q−2
q−1 nN − o(1) ≥ a.

Therefore we have a subset U of Vq−1 ∪ Vq with |U | = 2βN such that every p vertices in
U have at least m common neighbors in Hq−2. Either Vq−1 or Vq contains at least half of
the vertices of U , so w.l.o.g. we may assume that U ′ := U ∩ Vq−1 contains at least βN
vertices. Because α(Gn) < Q(p, βN), the vertex set U ′ contains a p-vertex set Aq−1 such
that Gn[Aq−1] = Kp. The vertices of Aq−1 have at least m = R(p− 1,Q(p, βN)) common
neighbors in Vq, so their common neighborhood contains a (p − 1)-vertex subset Aq of Vq
such that Gn[Aq] = Kp−1. Now Hq−2[Aq−1 ∪ Aq] is complete bipartite. Then similarly to
the proof of Theorem 4.6, for 1 ≤ i ≤ q, we can find a subset Ai of Vi satisfying the following
conditions:

• Gn[Aq] = Kp−1.

• For 1 ≤ i < q, Gn[Ai] = Kp.

• H0[
⋃q
i=1 A

i] is complete q-partite.

If a vertex set T is an edge of H0, then Gn[T ] = Kq. So Gn[
⋃q
i=1A

i] = Kpq−1, which is a
contradiction.
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