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Abstract. Loebl, Komlós and Sós conjectured that every n-vertex graph G

with at least n/2 vertices of degree at least k contains each tree T of order

k + 1 as a subgraph. We give a sketch of a proof of the approximate version
of this conjecture for large values of k.

For our proof, we use a structural decomposition which can be seen as

an analogue of Szemerédi’s regularity lemma for possibly very sparse graphs.
With this tool, each graph can be decomposed into four parts: a set of vertices

of huge degree, regular pairs (in the sense of the regularity lemma), and two

other objects each exhibiting certain expansion properties. We then exploit
the properties of each of the parts of G to embed a given tree T .

The purpose of this note is to highlight the key steps of our proof. Details

can be found in [arXiv:1211.3050].

1. Introduction

Szemerédi’s Regularity Lemma from 1975 allows us to decompose each dense
graph into a bounded collection of random-like subgraphs. The lemma and its
variants have found numerous applications in graph theory, number theory, and
theoretical computer science. In particular, in the last two decades, it is crucial to
some developments on extremal problems concerning dense graphs. On the other
hand, extremal problems concerning sparse graphs have been lacking a general
framework. We present a new tool which generalizes the Regularity Lemma and
which applies to all graphs. This tool seems particularly suitable for embedding
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trees, even in very sparse graphs. As an application, we prove an approximate
version of the Loebl–Komlós–Sós Conjecture.

The Loebl–Komlós–Sós Conjecture is a typical example of a problem in extremal
graph theory. These often are of the following type: “does a certain density condi-
tion imposed on a graph of order n guarantee a given subgraph?” Statements of this
spirit include Mantel’s theorem (which states that an average degree of more than
n/2 ensures a triangle as a subgraph), the more general Turán theorem, and Dirac’s
theorem, which states that a minimum degree of at least n/2 forces the appearance
of a Hamilton cycle. Other prominent results include the Erdős–Stone–Simonovits
theorem, which determines asymptotically the average degree threshold for appear-
ance of any fixed graph, or the solution [22] of the Pósa–Seymour conjecture about
containment of powers of Hamilton cycles.

Some of the progress in the area in the last two decades has been enabled by
the developments around the regularity lemma. The regularity lemma allows us to
approximate an original graph by a so-called cluster graph. The point in doing so
is that an original combinatorial problem translates to an easier one on the cluster
graph. Let us illustrate this fundamental feature with the examples mentioned
above: the modern, regularity lemma based approach reduces the Erdős–Stone–
Simonovits theorem to Turán’s theorem on the cluster graph. In a similar spirit,
the proof of the Pósa–Seymour conjecture about the appearance of the k-th power of
a Hamilton cycle can be reduced to an easier question of tiling with copies of Kk+1

on the cluster graph level, an answer to which is given by the Hajnal–Szemerédi
theorem. These and other applications of the regularity lemma in extremal graph
theory are surveyed in [24, 21].

Containment of trees is a particularly important case to study, as trees constitute
a relatively simple graph class. An easy greedy embedding argument shows that
each graph with a minimum degree of at least k contains each tree with k edges.
A graph formed by a union of cliques of order k shows that this result is optimal.

Two important conjectures have been made as to how the minimum degree
condition can be relaxed. The first of these is the famous Erdős–Sós conjecture
from 1963:

Conjecture 1. Every graph of average degree greater than k− 1 contains all trees
with k edges as subgraphs.

Conjecture 1 trivially holds for the containment of a star with k leaves, and it
is a classical result of Erdős and Gallai [10] that it also holds for paths (for more
history, see [11]). Further partial results include [5, 13, 29, 31]. A proof of the
conjecture for large graphs has been announced by Ajtai, Komlós, Simonovits and
Szemerédi [2].

Loebl, Komlós, and Sós (see [9]) conjectured the same assertion holds when
replacing the average degree condition with the median degree.

Conjecture 2. Every graph of median degree at least k contains all trees with k
edges as subgraphs.

Previous work on Conjecture 2 includes solutions which use additional restric-
tions on the host graph [28, 8], or on the trees [6, 26]. Most notably, Conjecture 2
has been solved for large dense graphs, i.e., for k linear in n, in [20, 7], building on
an approximate version given in [27]. For the exact value k = n/2, this had been
achieved earlier in [1, 32].
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Figure 1. An extremal graph for the Loebl–Komlós–Sós Conjecture.

Note that because of the stars, the median degree in Conjecture 2 has to be at
least k. Further note that Conjecture 2 is almost the best possible in the sense that
we cannot decrease much the number of vertices, namely n/2, that are required to
have degree at least k. For this, first assume that n is even, and that n = k + 1.
Let G∗ be obtained from the complete graph on n vertices by deleting all edges
inside a set of n

2 + 1 vertices. Then G∗ has n
2 − 1 vertices of degree k. It is easy

to check that G∗ does not contain the path with k edges (or any other tree with k
edges and independence number less than n

2 + 1). Now, taking the union of several
disjoint copies of G∗ we obtain examples for other values of n. (And adding a small
complete component we can get to any value of n.) See Figure 1 for an illustration.

It is not difficult to see that each of the two conjectures implies that the Ramsey
number of two trees Tk and Tm with k and m edges, respectively, is at most k+m.
This is the best possible for stars of even order, but not for all trees [12, 19].

Our main result is an approximate version of Conjecture 2, which reads as follows:

Theorem 3. For every ε > 0 there exists k0 such that for every k > k0, every
n-vertex graph G with at least (1+ε)n/2 vertices of degree at least (1+ε)k contains
each tree T with k edges.

Previous results [1, 27, 32, 20, 7] on the dense case of Conjecture 2 relied on
Szemerédi’s regularity lemma. The strategy of these proofs is explained in the next
section. The (original) regularity lemma is void when the host graph is sparse, i.e.,
when k = o(n). To circumvent this shortcoming, we present an extension of the
regularity lemma which is tailored to tree-embedding problems, and which applies
even to sparse graphs. We then show how this decomposition, which we call sparse
decomposition, can be used to embed the tree T given by Theorem 3.

In this paper we show some of the key ideas behind the proof. The actual
implementation of these ideas is technical and can be found in [14], split into four
parts [15, 16, 17, 18] for publication purposes.

2. The dense case

In this section, we recall the solution of the dense approximate version of Conjec-
ture 2 due to Piguet and Stein. Their proof provides several key ingredients which
are common to the proof of Theorem 3.

Theorem 4 ([27]). For every C, ε > 0 there exists k0 such that for every k > k0

we have that every graph G of order n < Ck with at least n/2 vertices of degree at
least (1 + ε)k contains each tree T with k edges.
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The proof follows a strategy typical for graph theory results which employ the
regularity lemma. It has three main steps: partitioning T , finding a suitable match-
ing structure in the cluster graph G of the graph G, and embedding T into G using
this matching structure. The right way to partition T is given by the following
lemma. We say that a subtree F ⊂ T is adjacent to a vertex v ∈ V (T ) \ V (F ) if
there is an edge from v to a vertex in F .

Lemma 5. For each τ > 0, k ∈ N, for any tree T with k edges there is a set
W = WA ∪WB ⊂ V (T ), and a set T = TA ∪ TB of disjoint subtrees covering all of
V (T )−W such that

(a) the trees in T have order less than τk,
(b) the trees in T are not adjacent to each other,
(c) |W | < 100/τ ,
(d) each side of the bipartition of V (T ) contains one of the sets WA, WB,
(e) each tree in TB is adjacent to only one vertex of W , and that vertex

lies in WB,
(f ) each tree in TA is adjacent to at most two vertices of W , and these

lie in WA,
(g) |V (

⋃
TB)| < k/2.

We call a tree in T internal if it is adjacent to two vertices of W , and call it an
end tree otherwise. Note that TB only contains end trees by property (e).

In order to obtain the partition from Lemma 5, we traverse T from the leaves to
a fixed root, sequentially chopping off ‘branches’ of T that have reached the critical
size of τk. Similar strategies of dividing larger objects into smaller pieces have been
used in other proofs employing embedding with the regularity method. As we shall
see, the partition of T from Lemma 5 will be useful for the sparse case as well.

The bulk of the work is on finding a suitable structure in the graph G. To
this end we use the regularity lemma [30]. Let us first introduce the key no-
tion of regular pairs. Given η > 0, a pair (A,B) of disjoint sets is η-regular if
|d(A,B)− d(U,W )| < η for each U ⊆ A,W ⊆ B with |U | > η|A|, |W | > η|B|. The
regularity lemma then reads as follows.

Lemma 6 (Regularity lemma). For each η > 0,m ∈ N there are n0,M such that
every graph on n > n0 vertices allows for a partition of all but at most ηn of its
vertices into m < k < M sets (the ‘clusters’) such that all but at most ηk2 pairs of
clusters form η-regular pairs.

With the help of Lemma 6, we regularize the graph G and obtain a cluster
graph G with clusters of size νk. Let L be the set of those clusters of G whose
typical vertices have degree more than k. Piguet and Stein show that G contains
a matching M plus two adjacent vertices A,B ∈ L such that the vertices in A
have degree more than k into M , and those in B have degree larger than k/2 into
V (M) ∪ L.

The tree T can be embedded into G by suitably mapping the vertices of WA into
A, the vertices of WB into B, and packing subtrees T (viewed as bipartite graphs)
into the edges of M and the edges EL emanating from L using basic properties of
regular pairs. Here, it is crucial we choose the parameter τ for Lemma 5 such that
τ � ν. That is, individual subtrees of T are much smaller than the clusters.

The large degrees of A and B into V (M) ∪ L guarantee that there is enough
space for embedding all trees from T . More precisely, each time we wish to embed
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a tree T ′ ∈ T , there are two things we have to ensure. The first is that we have
enough free space in the neighbourhood of either A or B to map the root of T ′.
The second is that we have sufficient free space in some regular pair meeting this
neighbourhood, to map the rest of T ′. For this, a degree of about k for the vertices
in A and a degree of about k/2 for the vertices in B is sufficient.

3. The sparse decomposition

In this section we introduce the basis of our proof of Theorem 3, the sparse
decomposition. This tool has been conceived by Ajtai, Komlós, Simonovits and
Szemerédi during their work on the Erdős–Sós conjecture. It allows us to decompose
any given graph, after a removal of a small fraction of the edges, into four sets: a
set Ψ of vertices of high degree, a graph Greg whose edges span regular pairs, an
expanding graph Gexp, and a set A of vertices which has a yet different expansion
property.

Throughout this section, let us fix a graph G on n vertices, and let k have the
same order of magnitude as the average degree of G.1 We use Greek majuscules and
minuscules to denote sufficiently large and sufficiently small constants, respectively.
Some of these constants may depend on G and k but are absolutely bounded from
above and from below. We make the subtle relations between these constants
explicit only when it adds to the clarity of this rough sketch.

The first step of the sparse decomposition is to separate the vertices of very high
degree from those of comparatively low degree. By deleting only a few well-chosen
edges, we arrive at a subgraph G′ of G that has a gap in its degree sequence. More
precisely, there are numbers Ω∗ and Ω∗∗ with Ω∗ � Ω∗∗ such that no vertex of G′

has degree between Ω∗k and Ω∗∗k in G′. Let us indicate how to create the gap. We
fix constants 1� Ω1 � Ω2 � · · · � Ωd 1ε e+1 :=∞. There is an index i ∈ [d 1

εe+ 1]

such the total degree of the vertices v with deg(v) ∈ [Ωik,Ωi+1k) is at most εkn.
Deleting the edges incident with these vertices almost yields the gap with Ω∗ = Ωi,
and Ω∗∗ = Ωi+1. The problem is that the edge deletion may cause degrees of other
vertices fall into the forbidden region [Ωik,Ωi+1k). This can be resolved using an
additional argument, which we omit here.

Let Ψ denote the set of all vertices of degree at least Ω∗∗k. The mere structural
information about the vertices Ψ is that they have huge degrees. On the other hand,
this property turns out to be so powerful for tree embeddings that it compensates
the lack of any finer description.

Before proceeding with the decomposition, we need a few concepts. The density

of a bipartite graph D = (U,W ;F ) is d(D) := |F |
|U ||W | , where F = E(D) are the

edges of D. An (m, γ)-dense spot in a graph is a non-empty bipartite subgraph
D with density d(D) > γ and minimum degree δ(D) > m. A graph H is (m, γ)-
nowhere-dense if it does not contain any (m, γ)-dense spot.

Let D be a maximal set of edge-disjoint (γk, γ)-dense spots in G′−Ψ. Let Gexp

be the (γk, γ)-nowhere dense graph obtained from G′ − Ψ by removing the edges
of D. (We chose the name Gexp for this graph in order to emphasize its expansion
property given by the fact it is nowhere dense.) We now sequentially remove from

1 This setting is compatible with the one of Theorem 3. Indeed, a straightforward calculation

gives that in that case the average degree d of G satisfies d > k/2. If, on the other hand, d ≥ 2k
then there is no need to use the sparse decomposition as we can pass to a subgraph with minimum

degree at least d/2 ≥ k and embed T greedily.
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Gexp any vertex of degree less than ρk, where ρ is a certain constant much smaller
than ε, but greater than γ � ρ � ε. Note that in the cleaning procedure we lose
less than ρkn edges, and the obtained graph, which we still call Gexp, has minimum
degree at least ρk.

The next step consists of regularizing the dense spots in D. By this we mean
we wish to find a graph spanning almost all of

⋃
D and consisting of clusters that

pairwise mostly form highly regular pairs, in the sense above. For each single one
of these spots this is possible by Lemma 6 above, but such a naive regularization
of each dense spot separately is useless. Indeed, for embedding T we may need to
traverse many different spots D. Thus the cluster structure of different dense spots
must agree on their intersection.

Consider all the Venn cells V with respect to the system {U,W : (U,W ;F ) ∈ D}.
We shall not attempt to regularize those Venn cells A ⊂ V which are of size less
than αk (for α� η), as those cells themselves may be smaller than the anticipated
cluster sizes. We now construct an auxiliary graph G = (V\A, E) on the larger Venn
cells, joining two Venn cells X,Y with an edge if there is a dense spot (U,W ;F ) ∈ D
with X ⊂ U, Y ⊂W .

Let us sketch how to regularize simultaneously all the dense pairs corresponding
to the edges of G in this setting. It can be shown that the maximum degree of
G is bounded from above by a constant ∆ that is independent of k. By Vizing’s
theorem, we can cover G with ∆ + 1 matchings M1, . . . ,M∆+1. We follow the idea
of Szemerédi’s proof of the regularity lemma, pumping up the mean square energy
when refining an irregular partition. The key difference is that we track ∆ + 1
mean-square energies, one for each matching Mi, rather than just a single one.
This is similar to the proof of the multi-coloured version of the regularity lemma,
which tracks a mean-square energy for each colour separately. We thus obtain a
system of clusters, of size νk, say, refining V \ A and regular pairs between some
of these clusters. Let Greg be the graph spanned by the regular pairs of positive
density.

It remains to make use of vertices in A :=
⋃
A, i.e., those in small Venn cells. An

elementary double-counting argument gives the following expansion property of A,
which we call the (Λ, β, γ)-avoiding property : For every X ⊆ V (G) with |X| ≤ Λk
for all but at most βk vertices v ∈ A there is a dense spot D ∈ D which contains v
and which satisfies |X ∩V (D)| ≤ γ2k. The constant β will be chosen much smaller
than γ, but still larger than τ � β � γ.

Putting all of the above together, we obtained a sparse decomposition (Ψ,Greg,
Gexp,A) which captures all but at most o(kn) edges of G.

4. Embedding the tree T

The proof of Theorem 4 as outlined in Section 2 is a combination of two elements:
a global embedding strategy based on the matching structure given by the clusters
A,B, and the matching M , and a local strategy applied sequentially for embedding
the individual subtrees from T . The local strategy there is the standard technique
of filling up regular pairs.

Also in the proof of Theorem 3 we shall find a suitable global structure, now in the
sparse decomposition instead of in the cluster graph. We will discuss this structure
later on. First, we indicate local strategies for embedding subtrees T in each of the
ingredients Ψ, Greg, Gexp, A of the sparse decomposition. The starting point of
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using either Ψ, Greg, Gexp, or A is that in our sequential embedding procedure we
wish to extend the partial embedding from a vertex with a substantial degree into
the respective object. For this, suppose that U ⊂ V (G) is the set of vertices used
in earlier steps of the embedding.

To work with A, we use the avoiding property. Say we have to embed a tree
T ′ ∈ T . For simplicity, let us assume that T ′ ∈ TB ; this guarantees that T ′ is an
end tree. Suppose its parent in WB has been embedded already in a vertex v of
degree more than βk into A \ U . Then, by the definition of the avoiding property,
there is a neighbour of v in A \ U that is contained in a dense spot D which does
not meet U much. We can place the first vertex of T ′ appropriately into D. We
then use the minimum degree γk of D to embed the rest of T ′ greedily. Here, we
use that τ + γ2 ≤ γ.

Next, we show how to use Gexp. Again, suppose we are in the process of em-
bedding a subtree T ′ ∈ TB . Say x is the last vertex of T ′ that has been embedded
already, and we now wish to embed the children of x. Assume the image v of x
has neighbourhood Nv ⊂ V (Gexp) of size at least ρk/2 in Gexp − U . (Below it will
become clear why we may assume this.) Since Gexp does not contain any (γk, γ)-
dense spots, in particular not between U and Nv, we know that most vertices in
Nv have less than ρk/3 neighbours in U . (Here, we used that γ � ρ.) Thus, it
is possible to embed the children of x in vertices that have degree at least ρk/2 in
Gexp − (U ∪ x), placing them in equally good positions as x earlier. Following this
strategy successively, we manage to embed all of T ′.

Regular pairs in Greg are used in the usual way for embedding trees of T . That
is, we view these trees as bipartite graphs, and embed them in regular pairs using
the regularity property.

It only remains to explain the role of Ψ. This set is used very rarely for embed-
ding; in particular we always have |U ∩Ψ| < λk/2. The idea is that after mapping
a vertex x ∈ T to a vertex v ∈ Ψ, we have an affluence of choices to extend the
embedding. However, the huge degree of v alone is not enough. For example, we
cannot map non-leaf vertices of T to leaves of G, and these may potentially com-
prise the entire neighbourhood of v. To circumvent this issue, we employ a rather
delicate cleaning procedure prior to starting the embedding. That is, we find a set
Ψ′ ⊂ Ψ of vertices which have degree at least Ω′k (for suitable Ω∗ � Ω′ � Ω∗∗)
into a ‘useful part of G’ in such a way that we do not lose many edges during
the cleaning. Having done so, we wish to map the neighbours of x to neighbours
of v that send not more than a few edges to U . This will guarantee that we can
extend the embedding avoiding U in subsequent steps. To this end, consider the set
Ũ = {u ∈ V (G) : deg(u, U) ≥ λk}. We have Ũ ⊂ {u ∈ V : deg(u, U \Ψ) > λk/2},
and double-counting the edges between Ũ and U \Ψ gives

|Ũ | < Ω∗k|U |
λk/2

� Ω′k .

In particular, the neighbours of x can be embedded outside of Ũ .

In Lemma 7, we describe the structural counterpart of the matching structure
(A,B,M) from the dense case (again, the structure is much simplified for presen-
tation reasons). Note that this global structure must combine properties of all the
objects Ψ, Greg, Gexp, A, as it could happen that none of them alone suffices for
embedding T .
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We write L for the set of those vertices of G that have degree at least (1 + ε)k
in G. We call a collection M of η-regular pairs of positive density with clusters of
sizes µk an (η, µ)-regular matching if all the regular pairs are disjoint.

Lemma 7. The graph G contains two disjoint sets X,Y ⊆ L, and an (η, µ)-regular
matchingM with the following properties.

(i) The bipartite graph G[X,Y] has minimum degree at least 100/τ .
(ii) The vertices in X each have degree at least (1 + ε/2)k into

Q :=
(
Ψ ∪ V (Gexp) ∪ A ∪ L ∪ V (M)

)
\ (X ∪ Y) .

(iii) The vertices in Y have degrees at least (1 + ε/2)k/2 into Q.
(iv) M and X ∪ Y are disjoint.

The sets X and Y will host WA and WB , that is, we can think of X and Y as
counterparts to the sets A and B from the dense case. Property (i) then guarantees
that the edges between WA and WB can be embedded greedily (cf. Lemma 5(c)).
Properties (ii) and (iii) guarantee that subtrees TA and TB can be embedded. In-
stead of embedding TA and TB using the matching M and edges EL as in the proof
of Theorem 4, we have to make use of embedding techniques developed above.

There are two major issues with the indicated approach. The first difficulty is
encountered when embedding an internal tree T ′ ∈ TA. As such a tree may be
adjacent to two vertices of WA, and we plan to embed WA in X, we have to return
to A after embedding T ′.

To understand this difficulty better, it is instructive to first see how an internal
tree T ′ with head x ∈WA and tail y ∈WA is embedded in the dense case (head and
tail are the two vertices from Lemma 5(e)). Say x has been embedded into vertex
v ∈ A. We choose an edge XY ∈M ∪EL that will host T ′, such that X is an edge
in the cluster graph. The regularity of (A,X) guarantees that the embedding of T ′

can be extended from x, but also, that after embedding T ′ we can embed y back
in A.

In the sparse case, we do not have any similar property for the set Q. To resolve
this issue, we introduce certain cleaning procedures which guarantee that the last
vertex before a tail of an internal tree is always embedded in a vertex of Q which
has degree at least 100/τ into X.

The second difficulty arises when constructing the regular matching M. In
analogy to the dense case, it would be a natural guess that M is a matching in
Greg. In Figure 1 we give an example showing that it is not always possible to
choose M like this.

Given the example of Figure 1, one might wonder why we bother to construct the
cluster graph Greg at all. The answer is that for constructing the regular matching
M, the graph Greg is helpful either directly or via the information it gives by
lacking a suitable matching.

5. Concluding remarks

Let us conclude with several comments.

• Our proof builds on techniques developed by Ajtai, Komlós, Simonovits
and Szemerédi for their work on the Erdős–Sós conjecture. However, there
is a substantial difference between the proofs already on the level of the
sparse decomposition. In their proof, a suitable matching structure can
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always be found in the cluster graph Greg. That means examples like the
one in Figure 2 do not enter the picture in the Erdős–Sós conjecture.

FIGURE 2. The graph G has a set L of 5n
9 vertices of degree 1.1k, and a set

S of 4n
9 vertices of degree 0.5k. For each v ∈ L, we have deg(v,L) = 0.7k

and deg(v,S) = 0.4k. For each v ∈ S, we have deg(v,L) = 0.5k and
deg(v,S) = 0. Further, there is a sparse decomposition of G such that the
union of the dense spots D covers all the edges of G. The dense spots D
intersect in such a way that the small Venn cells A cover L. The clus-
ter graph Greg is edgeless, and all vertices have degree less than k into
Ψ∪V (Gexp)∪A∪L. Thus, for our set X, we need to findM elsewhere. In
this particular case, one can show that there is a regular matching between
L and S covering almost all of S, and that such a matching is a good choice
for M.

• Similarly to the Erdős-Sós setting, it seems that our approach can be com-
bined with the stability approach of Simonovits. We hope to resolve the
Loebl–Komlós–Sós conjecture exactly, for k sufficiently large (this is work
in progress).

• The sparse decomposition of a graph is not uniquely determined and can
actually vary vastly. This is caused by the arbitrariness in the choice of
the dense spots from which we obtain the regularized graph Greg. This
situation is in acute contrast with the situation of decomposition of dense
graphs (given by the regularity lemma). Indeed, in the dense setting the
structure of the cluster graph is essentially unique, cf. [3].2

• Another important question is whether there is an alternative approach to
proving Conjecture 2 that avoids the notion of sparse decomposition and
even the notion of regular pairs. Such a programme has been developed
in the dense setting by Szemerédi and his collaborators, see [25] for a par-
ticular instance of “deregularizing” a result originally resolved [23] using
the regularity method. However, this programme has not given a general
alternative view, as of yet.

2 In order to have uniqueness, the setting needs to be somewhat strengthened; see Theorem 1

and Theorem 2 in [3]. The uniqueness phenomenon can be nicely expressed in the language of

graph limits [4].



10 J. HLADKÝ, D. PIGUET, M. SIMONOVITS, M. STEIN, AND E. SZEMERÉDI
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[12] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest.
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