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SOME OF MY FAVORITE ERDOS THEOREMS AND
RELATED RESULTS, THEORIES

M. SIMONOVITS

We shall survey here some parts of Paul Erdds’s work and influence on graph
theory, primarily through his influence on Extremal Graph Theory. There are
many strongly related areas, above all, Ramsey Theory and “Random Con-
structions”. Then there are the theory of Supersaturated Graphs, the Erdds—
Kleitman—Rothschild theory, the Applications in Geometry and Applications in
Number Theory, and many further fields that were definitely among the favorite
areas in Paul Erdds’s graph theory. We shall describe the general theory of ex-
tremal graphs, and touch on some of the above subjects, sometimes only very
shortly. I will only refer to those parts which are thoroughly described in some
other papers of these volumes.

Beside these large areas there are many “isolated gems” in Erdds’s combi-
natorics. Here we shall restrict ourselves only to a few ones.

1. PREFACE

The aim of these two volumes of survey articles is to provide a good overview
of Paul Erdés’s mathematics (and also of his personality). To learn about
his personality, I would not recommend the books written about him. More
adequate descriptions of Paul’s personality and his life are the articles of
Babai [13], [14], of T. Sés [262], [263] or Bollobds [35], or the paper by T. Sés
and me, [258].) And, of course, one should read the “birthday” papers of

... and there are many-many others, like that of Gy. Szekeres [271]. . .If one searches

the MathSciNet for Paul Erdés and 1913, then one finds further ones, like [2, 15] [14],
[18], and many others.
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his old friends, like Paul Turdn [281], or of Richard Rado [236] and Ernst
Straus [268]2, written on the occasion of his 70th birthday and of Hajnal
and T. Sés [170] or Bollobés [34].

To learn about Paul Erdés’s mathematics, 1 feel, the best is to read
his original papers. One of my favorite mathematics books is the Art of
Counting, Paul’s selected papers in Combinatorics [95]. I also warmly
recommend Paul Turdn’s birthday paper written on the fiftieth birthday
of Paul, reprinted here [281], or Paul’s paper on his favorite theorems [103]
or Bollobds’ paper [35].

Here I decided to describe Paul Erd6s’s influence on Extremal Graph
Theory “through my eyes”, but not trying to give a very even description.
The task I undertook is a hopeless one. Andras Hajnal, in his survey on
Erdés’s Set Theory [172] writes:

“It is as if T have been trying to sketch a rain forest, but with only
enough time and ability to draw the trunks of what I thought to be
the largest trees. Paul’s real strength is in the variety of some of those
hundreds of small questions which he has asked that have given some real
insights into so many different topics. I can only admire his inventiveness
and thank him for everything he has given us.”

When Paul became 80, as Hajnal and many others of us, I also wrote
a survey, on Paul’s influence on Extremal Graph Theory [255]. Of course,
I cannot avoid some repetitions here: FErdds died when he was 83, and
the facts did not change that much in Paul’s last 2-3 years. Yet I shift
the emphasis here to those parts which I had to neglect in [255] because of
time, space and energy limitations, or where new results have been obtained
recently. Occasionally I included older but more hidden ones.

Also, I tried to show his deep and wide influence on others. (At this
point I should apologize: there are very many results and many people
I should have mentioned here but could not, by “time, space and energy
limitations”.) Here I tried to avoid some of those parts which were covered
by the papers of Bollobds [36], Bondy [48], Brown and myself (!) [60] and
Spencer [266]. With a slight exaggeration, I could have used the title

Random walk in the Erdds jungle

I have not chosen this title: it is too fancy and large part of my rambling
around in the “Erdds jungle” will not be that random.

2 These two papers are reprinted here.
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In the first major part I will describe the general theory, in the second
one I will write about some areas more or less connected to the general
theory.

There will be large parts of Erd6s’s graph theory which I do not intend
to visit now, still I would like to point at them, describing them in just a
few sentences, here or in the subsequent parts. These large parts are the
following ones:

e FErdds and Cycles: described by me in [255] and in this volume by
Bondy [48];

o Multigraph and Digraph Extremal Problems: A series of papers was
written on the topic by Erd6s, Brown and myself, described in this volume
in the survey by Will Brown and me [60], see also our earlier paper on the
“most general case” [59];

o Ramsey—Turdn Theory: see the recent survey by V. T. Sés and me
[259];

o  “Typical Structure of Random Graphs this will completely be
avoided here. This very important and wide area is described in this
volume by Bollobds [36]. At the same time I will occasionally touch on
the application of random methods in graph theory.

”3 .

e Hypergraph Extremal Problems and Intersection Theorems: one can
identify them or distinguish between them. I regard them as two distinct
subjects. I feel it is a pity that there are no separate and detailed surveys on
them here. I will indicate only the topic of hypergraph extremal problems
but not at the level it deserves. Of course, one could always read the surveys
of Fiiredi [151], Frankl [145], or Fiiredi [152], and others.

e Open Problems: these constitute some of the most important ingre-
dients of Erdés’s influence. Again, the best sources are Erdés’s own problem
papers. I also strongly recommend [99]. A profound discussion of Erdés’s
open problems can be found in a paper of Fan Chung [72], or its expansion:
the book of Fan Chung and R. L. Graham [73]. I will include here only very
few of Erd6s’s open problems.

e Szemerédi Regularity Lemma [273]: This is one of the most powerful
tools in Extremal Graph Theory. So it is one of the most powerful tools
to solve many of the Erdds problems. Komlds and I have written an
extensive survey on the topic, [200], and Komlés, Shokoufandeh, Szemerédi,
and I [199] wrote a new version of it. In spite of the fact that many

3 which we mostly call “The evolution of Random Graphs”.
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new and important results were proved in this field in the last few years,
their description would be too technical here. Would I write on the topic,
I would explain among others hypergraph versions, e.g., Frank, Rodl [144],
F. Chung [70], some new variants due to Komlés, see, for example, [200],
or some versions of Frieze and Kannan [148] and the fairly recent and very
successful new technique, called Blowup Lemma, due to Komlds, G. N.
Sarkozy* and Szemerédi, see, e.g., [195], [196], [197], [198]. See also (among
the many new, interesting results connected to the Regularity Lemma and
the Blowup lemma) the survey of Komlés on the Blowup Lemma [194], R6dl
and Rucinski [239], [240], etc.

o Applications: 1 will neither speak of the applications of Turdn’s the-
orem in the theory of distance-distributions, having applications in Geome-
try, Potential Theory, (initiated by Turdn,> and developed into a theory by
Erdés, Meir, T. Sés and Turdn (see [282, 117], ... ), nor about the applica-
tions in probability theory, initiated by G.O.H. Katona, see [186, 187], ...)
since these are explained in [60] and also in [259]. We just touch on the
applications in Number Theory.

Originally this survey was much longer. To cut it relatively short,
I decided to leave out many parts here, but post a longer version of this
paper (describing more topics, in more details) on my homepage:
http://www.renyi.hu/~miki/erdos99.ps .
It still shows a lot of compromises as to what to leave out and what to
keep, but less than this version.

2. INTRODUCTION

Notation. We shall mostly consider simple graphs: graphs without loops
and multiple edges. Yet, there will be parts where we shall regard digraphs
and hypergraphs. For a set @, |Q| denotes its cardinality. Given a graph
G, e(G) denotes the number of its edges, v(G) the number of vertices,
X(G) and «(QG) its chromatic and independence numbers, respectively. For
graphs the (first) subscript will mostly denote the number of vertices: Gy,

4 In connection with cycles in graphs and extremal graph theory, we often refer to
two Séarkdzy’s: Andrds, and his son, Gébor.

5 actually emerging from an observation of Erdds.
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Sn, Tnp, - .- denote graphs on n vertices. There will be some exceptions, e.g.,
speaking of excluded graphs Ly, ..., L, we use subscripts just to enumerate
them. Given two disjoint vertex sets, X and Y, in a graph G,, e(X,Y)
denotes the number of edges joining X and Y. Given a graph G and a set
X of vertices of G, the number of edges in the subgraph spanned by X will
be denoted by e(X), the subgraph of G spanned by X is G[X]. G(X,Y) is
a bipartite graph with color classes X and Y.

Special graphs. K, denotes the complete graph on p vertices, T}, ; is the
Turdn graph on n vertices and p classes: n vertices are partitioned into p
classes as uniformly as possible and two vertices are joined iff they belong to
different classes. This graph is the (unique) p-chromatic graph on n vertices

with the maximum number of edges among such graphs. Kp(ni,...,n,),
often abbreviated to K(ni,...,np), denotes the complete p-partite graph
with n; vertices in its i class, i = 1,2,...,p.

We shall say that X is completely joined to Y if every vertex of X
is joined to every vertex of Y. Given two vertex-disjoint graphs, G and H,
their product G ® H is the graph obtained by joining each vertex of G to
each one of H.% In case of many graphs we may also use the notation [] G;.
As a generalization of T}, p, we define H;, ;, 4 := Kq ® Tp,—q,p-

Quoting. Below sometimes we quote some paragraphs from other papers,
but the references and occasionally the notations too are changed to comply
with ours.

2.1. A map?

Erdés’s mathematics has an extremely wide scope. In Erdés’s combinatorics
the following four ingredients had very strong connections: Ramsey Theory,
Extremal Graph Theory, Random Graphs, Applications in Number Theory
and Geometry. Below I made a “map”, trying to describe this situation in
a more detailed way. To make the picture below informative, I had to leave
out several fields and many connections. The double lines indicate the most
important connections.

6 often called join of G and H.
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2.2. Extremal Graph Theory: Early developments

Extremal graph theory is “one of the big gates to enter” the empire of Paul
Erdés’s combinatorics. We start with a brief non-mathematical description
of the history and then go into details.

Formally, extremal graph theory started with Mantel’s theorem [220]
(1907)" which is the very special case of Turdn’s theorem, for K3. Next
Erdés proved and applied the Cy-theorem in number theory (1938), but
missed the occasion to start the systematic investigation of this field. Then
came around Turdn’s theorem (1941). The next step was that Erdds and
A. H. Stone, setting out from a topological question, proved the Erd6s—Stone
theorem (1946) which later led to the Erdés—Stone—Simonovits theorem
(1966) (yielding the general asymptotics in extremal graph problems) and
to the Erdés—Simonovits structural theory (1967-68). Turdn’s theorem was
rediscovered by A. Zykov [292], in 1949.

7 Here T will always use the year of publication but often there are several years or
between the birth and the publication of some results.
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2.3. Starting from number theory

In his early years Erdés worked almost entirely in Number Theory. His
papers between 1932 and 1936 were mostly about primes, and his first graph
paper (a joint work with Tibor Gallai® and Endre Vézsonyi) appeared in
Hungarian in 1936 and its topic was the Euler lines of infinite graphs [110].

Erddés often arrived at graph problems from applications in other fields.
One famous case is the rediscovery of Ramsey’s theorem in the Erdés—
Szekeres “geometry” paper [137] (1935). A detailed description of this
“story” can be found in the “preface”-paper of Szekeres in the Art of
Counting [270].° Here we are interested in the birth of Extremal Graph
Theory. In 1938 Erdés published a paper [80] with the title “On sequences
of integers no one of which divides the product of two others and related
problems”. This was where Erdds proved his first extremal graph theorem,
to use it as a lemma, in a solution of a multiplicative Sidon problem:

Theorem 2.1. If Cy £ G(X,Y), |X| =|Y| =k, thene(G(X,Y)) < 3k%2.

The constant 3 can be improved to 1+ 0(1) (see Section 4.7). Basically
this theorem implied the upper bound in the main theorem of [80]. To
get the lower bound Erdés used finite geometries (a construction of Eszter
Klein).

Related literature: Erdds [93], T. Sés [261], Simonovits [255], Bondy [48]
and Section 7.

3. TURAN TYPE EXTREMAL PROBLEMS

Extremal Graph Theory is one of the wider branches of Graph Theory and
— in some sense — one of those where Paul Erdés’s profound influence can
really be seen and appreciated.

8 Many people changed their name to Hungarian-sounding ones. Gallai’s name was
originally Griinwald, Véazsonyi was originally called Weiszfeld.

% Turdn wrote in [283] that “A decisive moment in his studies was the rediscovery
of Ramsey’s theorem in 1934.”
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We shall call the Theory of Turdn type Extremal Problems the
area which — though being much wider — still is originated from problems
of the following type:

Given a family £ of sample graphs, what is the maximum number of
edges a graph G,, can have without containing subgraphs from £?

Here “subgraph” means “not necessarily induced”. Given a family £
of — so called — excluded or forbidden subgraphs, ex(n, £) denotes the
maximum number of edges a graph G,, can have without containing forbid-
den subgraphs. (Again, containment does not assume “induced subgraph”
of the given type.) The family of graphs attaining the maximum will be
denoted by EX(n, £). If £ consists of a single L, we shall use the notation
ex(n, L) and EX(n, L) instead of ex(n,{L}) and EX(n,{L}). We call G
L-free if no L € L is contained in G.

Perhaps Turdn was the third to arrive at this field. In 1940 he proved
the following theorem [278] (see also [279], [284]):

Theorem 3.1 (Turdn). (a) If G, contains no K, then e(Gy) < e(Ty p—1).
(b) In case of equality G, = Ty p—1.

Turan’s original paper contains much more than just this theorem. Still,
the main impact coming from Turdn was that he asked the general question:

What happens if we replace K, with some other forbidden graphs,
e.g., with the graphs obtained from the Platonic polyhedra, or with
a path of length £, etc.

3.1. Classification of ordinary extremal graph problems

When speaking of extremal graph problems, I basically distinguish three
kinds of problems:

Non-degenerate problems: All the excluded graphs have chromatic
number at least three. Therefore ex(n, L) > e(T,2) > |_’2—2J . The asymp-
totics are given by the Erd6s—Stone-Simonovits theorem. Setting out from
a problem in topology, Erdés and A. H. Stone proved the following theorem
in 1946:
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Theorem 3.2 (Erdés—Stone [135]). For every fixed p and m

(1) ex(n, Kpy1(m,...,m)) = (1 - 1) (Z) + o(n?).

p

Moreover, if p is fixed and m := \/¢,(n) where £,(z) denotes the p times
iterated logarithm of z, (1) still holds.

Related literature: Bollobds and Erdds [37], Bollobds, Erdds, and Si-
monovits [38], Chvétal and Szemerédi [76, 77], Bollobds and Kohayakawa
[42], Ishigami [177], and Lovész [212].

It turns out that a parameter related to the chromatic number plays
a decisive role in many extremal graph theorems. The subchromatic
number is defined by

(2) p(L) :=min{x(L) : Le L} — 1.

The following result is an easy consequence of the Erdés—Stone theo-
rem [135]:

Theorem 3.3 (Erd8s—Simonovits Theorem [125]). If L is a family of
graphs with subchromatic number p, then ex(n, L) = (1 — %) (%) + o(n?).

The meaning of this theorem is that ex(n, £) depends only very loosely
on L; up to an additive error term of order o(n?), it is already determined
by the minimum chromatic number.!® We shall return to the structural
asymptotics in Section 3.2.

Degenerate problems: These are problems where there are bipartite
excluded graphs in £. We shall see in Section 4.1 that here ex(n, L) =
O(n?=¢) for some ¢ = ¢(£) > 0. These seem to be very important problems
from the point of view of understanding the general case, see Section 5.
Among these, I feel, it is worth distinguishing the class of very degenerate
extremal problems, where £ contains some trees or forests, and therefore
ex(n, L) = O(n).

10 This does not assert to much if £ contains bipartite graphs as well, see Section 4.
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3.2. The general theory, structural results

The extremal problem for £ is considered to be “completely solved” if all
the extremal graphs have been found, at least for n > ng(£). Quite often
this is too difficult, and we find only ex(n, L), or only good bounds for it.
(These bounds may be asymptotically sharp, or sharp up to a multiplicative
constant, or even weaker ones.)

We shall see several cases where the excluded graph is very complicated
and yet we have a complete solution, e.g., the dodecahedron theorem, the
icosahedron theorem, the Petersen graph theorem, see Section 6. In a
slightly weaker sense the Octahedron theorem is also a “complete solution”,
(see Theorem 5.2).

The asymptotical structure of the extremal graphs is also almost de-
termined by p(L), for p > 2, and is very similar to that of T}, ,. This is
expressed by the following results of Erdds and Simonovits [89, 91, 246]:

Theorem 3.4 (Asymptotic Structure Theorem). Let £ be a family of
forbidden graphs with subchromatic number p. If S, is any graph in
EX(n, L), then it can be obtained from T;,, by deleting and adding o(n?)
edges. Furthermore, if L is finite, then the minimum degree dp;,(S,) =

(1 — %) n+ o(n).

The structure of extremal graphs is fairly stable, in the sense that the
almost-extremal graphs have almost the same structure as the extremal
graphs (for £ or for K,.1). This is expressed in our next result:

Theorem 3.5 (First Stability Theorem). Let £ be a family of forbidden
graphs with subchromatic number p > 2. For every ¢ > 0, thereexist a§ > (
and n. such that, if G, contains no L € L, and if e(Gy) > ex(n, L) — én?,
then, for n > n., G, can be obtained from T, , by changing at most en?
edges.

3.3. The Decomposition Family

Theorems 3.4 and 3.5 are interesting on their own and also widely applicable.
For more precise results we need
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Definition 3.6. Let £ be a family of forbidden subgraphs, and let p = p(£)
be its subchromatic number. The decomposition M of L is the family of
minimal graphs M for which we have L C M®K,_(r,...,r) forr = v(L).}

In other words, M is the family of minimal graphs M with the property
that, for some L € L, L contains M as an induced subgraph and L — M is
(p — 1)-colorable.!? Another way of describing M is that the graphs in M
are those graphs which cannot be put into the (first) class of T}, , without
getting forbidden subgraphs.

Let us see some examples. In case of £ = {K,;1} the family M consists
of one graph, K,. If £ is finite, then M is also finite but the converse is not
true: for the family of all odd cycles, M := { K>}, again.

If L = Kp+1(t0,t1,t2,. .. ,tp), (to S tl S t2 S S tp) then K(to,tl)
is in the decomposition and this is crucial in handling the corresponding
extremal graph problem (Erdés and Simonovits [127]). If L is the icosahe-
dron graph, then M := {Ps, K3+ K3}, where K3+ K3 is the vertex-disjoint
union of two triangles. (This is not evident!)

Generally, take any p 4+ 1-chromatic Ly € £ and color it in p+ 1 colors.
All the graphs spanned in Lg by two colors are in M. Hence p(M) = 1.

The following result is due to Simonovits [246], (see also Erdés [91]).

Theorem 3.7 (Decomposition Theorem [246]). Let £ be a family of for-
bidden graphs with p(L) = p and decomposition M. Then every extremal
graph S, € EX(n,L) can be obtained from a suitable K,(n1,...,np) by

changing O (ex(n, M)) +O(n) edges. Furthermore, n; = %—}—O(W) +
O(1), and if L is finite, then
1

D n
This implies that, with m = [n/p],
ex(n, L) = e(Tpp) + O(ex(m, M) +n).

If ex(n, M) > cn, then O(ex(m, M)) is sharp: put edges into the first
class of a T}, , so that they form a G, € EX(m, M); the resulting graph
contains no L € £, and has e(T;, ,) + ex(m, M) edges.

1 Taking the minimal graphs is a technical step but it guarantees, e.g., that M if
finite when L is finite.

12 [, — M is the graph obtained from L by deleting all the vertices of M and all the
incident edges.
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A second, more precise stability theorem can be established using the
methods of [246], see [1]. We conclude this section with the theorem char-
acterizing those cases where T), j, is the extremal graph.

Theorem 3.8 (Simonovits [247]). The following statements are equivalent:

(a) The minimum chromatic number in L is p + 1 but there exists (at
least one) L € L with an edge e such that x(L — e) = p. (Color critical
edge.)

(b) There exists an ny such that for n > no(L), T, , is extremal.

(¢) There exists an ng such that for n > no(L), T, p is the only extremal
graph.

The case p = 2 was (in some sense) settled earlier, by Erdés, see [86].

Remark 3.9. Turan’s theorem is self-strengthening in the sense that one
can prove easily and in an elementary way that if T}, , is extremal for n > ny,
then it is the only extremal graph for n > ng + 3p.

4. DEGENERATE EXTREMAL PROBLEMS

One of the problems Turdn asked in connection with his graph theorem
was to find the extremal numbers for the graphs of the regular (Platonic)
polytopes, see [86]. The Tetrahedron graph is K4: the answer is given
by Turdn Theorem. The question of the Octahedron graph is solved by
Theorem 5.2, the problems of the Icosahedron [249] and Dodecahedron [247]
can be found in Section 6.

In some sense, if we cannot solve an (ordinary) extremal problem, the
reason is that either it is degenerate and too difficult, or it reduces to a
difficult degenerate extremal problem. In this sense, the central problems
in Extremal Graph Theory are the degenerate ones. We return to this
question in Section 5.

A subcase of the “unsolvable” degenerate extremal graph problems is
when we have a probably sharp upper bound but no hope for a construction
to provide a matching lower bound. This is the case for K(p,p), p > 4, or
for Cyy, for 2¢ # 4,6,10, and probably for the cube Qg. (I do not know of
any case of a finite £ where the “random graph construction” provided a
sharp lower bound in an ordinary extremal graph problem.) So our hope
lies in finite geometric or other, say, algebraic constructions.
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4.1. The Kovari—T. S6s—Turan theorem

Perhaps the two most important degenerate extremal graph problems (i.e.,
when L contains bipartite graphs) are L := Kjy(a,b) and L = Cy;,. The
Kévari-T. Sés—Turdn theorem [205] solves the extremal graph problem of
Ks(a,b), at least, provides an upper bound, which in some cases proved
to be sharp and is conjectured always to be sharp.!? This theorem is a
generalization of the Cj-problem, since Cy = K(2,2), and, on the other
hand, is a special case of the Erdés—Stone theorem, apart from that we get
estimates sharper than in the original Erdés—Stone case.

Theorem 4.1 (Kévari-T. Sés—Turdn). Let 2 < a < b be fixed integers.
Then

1 1
ex(n, K(a,b)) < 5\/“ b—1n>a + Fan.
Conjecture 4.2. The exponent 2 — é is sharp: Fora <b
ex(n, K(a,b)) > can2_%.

This is known only for a = 2, by Erdés [80], Erdés, Rényi, V. T. Sés,
[122], and independently W. G. Brown [54], who also showed the sharpness
for @ = 3. Random graph methods [134] show that ex(n,K(a,a)) >
can27ﬁ. Fiiredi [155] (superseding a result of Mors [229]) improved the
constant in the upper bound, showing that

ex(n,K(2,b+1)) = %\/I;n?’/Q + O(n*/3),

and that the constant provided by Brown’s construction is sharp. While one
conjectures that ex(n, K(4,4)) /n7/* converges to a positive limit, we know
only, by the Brown construction, that ex(n, K(4,4)) > ex(n,K(3,3)) >
en®/3. Tt is unknown if

ex(n, K(4,4))

— 00.
nb/3

13 A footnote of [205] tells us that the authors have received a letter from Erdés in
which Erd6s informed them that he also had proved most of the results of [205].
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Remark 4.3. The Kévari-T. Sés—Turan theorem is applicable in many
cases, in number theory and geometry.

Related literature: The survey of Guy [165], Zndm [291], Hyltén-Cavallius
[176], Mors [229], Furedi [155], and Section 7.

4.2. Cycles in graphs

This part will be much shorter than it deserves to be, primarily because the
first part of Bondy’s beautiful survey in this volume [48] covers many of the
results I would mention here.

Cycles play central role in graph theory. Many results provide condi-
tions to ensure the existence of some cycles in graphs. Among others, the
theory of Hamiltonian cycles (and paths) constitute an important part of
graph theory. The Handbook of Combinatorics contains a chapter by Bondy
[47] giving a lot of information on ensuring cycles via various types of con-
ditions. Also, the books of Bollobés [29], of Walther and Voss [287] and of
Voss [285] contain many relevant results.

4.3. The Erd6s—Gallai theorems

One of the problems posed by Turan was the extremal problem of cycles of
length m. If we exclude all the odd cycles, the extremal graph will be the
Turdn graph T, 2. What are the extremal graphs if we exclude the cycles of
length at least m? The answer is given by the Erdés—Gallai theorem:

Theorem 4.4 Erdés and Gallai [109]). Let £, = {Cy : kK > m}. Then
(i) 2-n — im? < ex(n,Ly,) < ™5n and

(ii) the connected graphs G,, whose 2-connected blocks are K, _1’s are
extremal (when they exist).

The following theorem is the twin of the previous one’s.

Theorem 4.5 (Erdés and Gallai [109]). ex(n,P,) < “>2n. The union

of [%J vertex disjoint K, 1 (and one smaller K,) shows the sharpness:
ex(n, Pn) = 22n + O(m?).
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This theorem has a sharper form, proved by Faudree and Schelp [140]
and an even sharoer one by Kopylov [203]. They needed the sharper form
to prove some Ramsey theorems on paths.

Remark 4.6. A “loop” is a path z1z3...7); and an extra edge zpz; for
some j < k. Beside asking the problem of paths and cycles, Turdn also asked
for the determination of the extremal number of “loops”. The problem was
solved by Andrasfai [10]. Erdés also mentioned this result in [89] and one
can find a lot of information on this topic in Voss’ description [287, 286].

Related literature: Faudree and Schelp [140, 141], Kopylov [203], Voss
[287, 286].

4.3.1. The Erdds—T. Sés conjecture. Erdés and T. Sés observed that
the same estimates hold both for the path P, and the star Ko(1,m—1) and
these being two extremes among the trees of m vertices, they formulated

Conjecture 4.7 (Erd6s—T. S6s). For any tree T,,,

-2
ex(n,Tp,) = m

n+ O(1).

Some asymptotic versions of this conjecture were proved by Ajtai,
Komlés and Szemerédi, (unpublished), also, the conjecture is proved in its
sharp form for some special families of trees, like caterpillars.

Ajtai, Komlés, Simonovits and Szemerédi proved [3]:

Theorem 4.8. For every € > 0 there exists an mqg such that for any
m > my, for any tree T,,,

ex(n, Tp) < =

7+ en.
The Loebl conjecture, originating from “problems on discrepancy of
trees”, is very strongly related to these topics.

Conjecture 4.9 (Loebl). If G, has at least 4n vertices of degree at least
%n, then G,, contains all trees of at most %n edges.

An asymptotic version of this was proved by Ajtai, Komlés, and Sze-
merédi [4]. The conjecture was generalized by Komlés and T. Sés:
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Conjecture 4.10. If G, has at least %n vertices of degree at least k, then
G, contains all trees of at most k edges.

A related theorem for paths was proved earlier by Erdds, Faudree,
Schelp and me [104]. As we wrote in [104],

We wish to determine the minimum value of 4, such that each graph
on n vertices with at least £ vertices of degree at least m contains
a Pryi.

Conjecture 4.11 ([104]). Let n, m and k be fixed positive integers, with
n>m >k and set 6 = 2 when k is even and = 1 when k is odd. If G,, is
a graph on n vertices and at least

o e

vertices of degree > m, then G,, contains a Py 1.

This is sharp, if true. We proved (among others) that this is essentially
true:

Theorem 4.12. For every positive integer k, Conjecture 4.11 holds if ¢ is
replaced by O(1) in (3).

Problem 4.13. Assuming the connectivity of G, is it enough to assume
roughly half of the vertices required in (3) to be of high degree to ensure a
Py CGR7

Related literature: Erdds, Fiiredi, Loebl, T. Sés [108], Ajtai, Komlos,
and Szemerédi [4], Erdés, Faudree, Schelp and Simonovits [104].

4.4. The case of excluded Cy;

Since the odd cycles are 3-chromatic color-critical graphs, one can apply
Theorem 3.8 to them to get the following Erdds result [86]: ex(n, Coxi1) =
["TZ} if n > ng(k).

The case of even cycles is much more fascinating. The upper bound
would become trivial if we assumed that G, is (almost) regular and contains
no cycles of length < 2k. The difficulty comes from that we exclude only
Cy. The first case is that of Cy, see [80, 54, 122]... We shall discuss this
very important problem later. The general case is described by
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Theorem 4.14 (Erdés, Bondy-Simonovits [49]).

ex(n, Cox) = O(kn't1/F).

Theorem 4.15 (Bondy-Simonovits [49]). If e(Gy) > 100kn'T'/*, then

Cy C G,, for every integer £ € [k, knl/k].

Erdés stated Theorem 4.14 in [86] without proof'* and conjectured
Theorem 4.15, which we proved. The upper bound on the cycle-length
is sharp: take a Gy, which is the union of complete graphs of size ckn'*1/k.

Related literature: Bondy [48], Simonovits [255] Gydrfds, Komlds, and
Szemerédi [168].

4.5. Reduction to simpler graphs

As Erdés pointed out [90], the following holds.

Theorem 4.16. Every graph G, has a bipartite subgraph H(U,V) in
which each vertex has at least half of its original degree: dp(z) > 3dc(z).
Thus e( H(U,V)) > 1e(Gy).

There are several results on how large p-partite graph can one find in a
G, but here I skip the topic. One important consequence of this (almost
trivial) fact is that (as to the order of magnitude), it does not matter if we
optimize e(G,,) over all graphs or only over the bipartite graphs, if we care
only for the exponent:

If exp(n, L) denotes the maximum number of edges a bipartite G,, can
have without containing subgraphs from £, then ex(n, £) < 2exp(n, £).!
So we may always reduce our problems to bipartite G,,. To prove the cube-
theorem, (see Section 4.6.1) Erdés and I developed in [126] a much less
trivial reduction. We need

14 The dependence of the constant on k was our result but it is unknown if it is
sharp or not?

15 Here we are interested only in the case p(£) = 1, but the assertion itself holds for
every L.
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Definition 4.17. G, is d-pseudo-regular, if its maximum degree divided
by its minimum degree is bounded by d.

Let exqp(n,L) denote the maximum number of edges a d-pseudo-
regular, bipartite G, can have without containing subgraphs from L.

Theorem 4.18 (Erd8s—Simonovits [126]). For any L, if d is sufficiently
large, and exq p(n, L) = O(n'™®), then also ex(n, L) = O(n'*t).

This immediately follows from

Theorem 4.19 ([126]). Let d = 10-2% =L If ¢(Gn) > n'*®, then G,

1-a

contains a d-pseudo-regular H,, with e(H,,) > m!'*t® and m > ni+a.

4.6. Recursion theorems

Recursion theorems could be defined for ordinary graphs and hypergraphs,
for ordinary degenerate extremal problems and non-degenerate extremal
graph problems, for supersaturated graph problems, (see Erdés-Simonovits
[130]) and many other similar cases. However, here we shall restrict our
considerations to ordinary degenerate extremal graph problems. In this
case we have a bipartite L and a procedure assigning an L' to L. Then we
wish to deduce upper bounds on ex(n, L'), using upper bounds on ex(n, L).

4.6.1. The “cube”-recursion. On the cube-graph we have

Theorem 4.20 (Cube Theorem, Erdés—Simonovits [126]).

ex(n, Qs) = O(n®").

We conjectured that the exponent 8/5 is sharp. Unfortunately, no
“reasonable” lower bound is known. The Cube theorem follows from a
recursion theorem:

Theorem 4.21 (Recursion Theorem [126]). Let L be a bipartite graph,
colored in BLUE and RED. A K (t,t) be also colored in BLUE and RED.
Let L* be the graph obtained from these two (vertex-disjoint) graphs by
Jjoining each vertex of L to all the vertices of K (t,t) of the other color. If
ex(n, L) = O(n?~%) and

—t,

QI+

I
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then ex(n, L*) = O(n*>#).

Applying this recursion theorem with ¢ = 1 and L = Cg we obtain
the Cube-theorem. This Erdés—Simonovits recursion immediately provided
a unified, new proof for several old theorems, and disproved an earlier
conjecture of Erdés that the exponents in the degenerate extremal problems
always have either the form 1 + % or 2 — %, for some integer ¢ > 1.
(The counterexample was more complicated than the cube; despite that we
conjecture that ex(n, Qg) > con®/®, we do not know if ex(n, Qg) /n*? — oo
when n — 00.)

This recursion theorem has several interesting applications. One im-
mediately can deduce from it the K&vari-T. S6s—Turdn theorem (apart
from the value of the multiplicative constant), by applying Theorem 4.21 to
L=K(l,g—p+1) with t = p— 1. (Of course, in some sense this is “cheat-
ing”, since we use here the extension of the technique we learned from the
proof of Theorem 4.1.) However, if we apply this, e.g., to ¢ = p—1 and any
tree, then we get, among others

Theorem 4.22 (Erdés). Let L be obtained from Ka(a+1,a+1) by deleting
an edge. Then ex(n,L) = O(n%%).

4.6.2. The O-recursion. Faudree and I sharpened Theorem 4.14 in another
direction:

Definition 4.23 (Theta-graph). O(k,p) is the graph consisting of p inde-
pendent paths of length k (i.e. £ edges) joining two vertices z and y.

Clearly, ©(k,2) = Cy;. We proved
Theorem 4.24 (Faudree-Simonovits [142]). ex(n,O(k,p)) < cgp-nlT1/E.

Fan Chung [69] constructed graphs, almost showing that for p > ky,
ex(n, @(k,p)) > Chp - nlti/k,

The Erdés—Rényi Theorem [120] shows that Theorem 4.24 is sharp in
the sense that -
ex(n,@(k,p)) > c,’;pnuﬂ'ﬁ.

Again, see Bondy [48], for some further information. Theorem 4.24 was

deduced from a recursion theorem. We need two definitions.



D N M. S1monovits

Definition 4.25 Given a bipartite graph L and a fixed proper 2-coloring
of it, ¢ : L — {Red,Blue}, Li(L,) is the graph obtained by taking a new
vertex x outside of L and joining it to each Red vertex of L by a path of
length k& — 1,'6 where these paths have no common vertices but .

Most of our graphs are L connected and therefore they have only two
2-colorings. (The matching is not connected but it has only 1 2-coloring
and is uninteresting in our theorems.)

Definition 4.26. Given a bipartite L and a fixed 2-coloring of L,
ex*(a,b, L) is the maximum number of edges a bipartite graph G(a,b) can
have without containing an L whose first color class is in the first color class
of G(a,b) and the second color class is in the second color class of G(a,b).!”
ex*(n, L) = max, ex*(a,n — a, L).

Theorem 4.27. Let L be an arbitrary bipartite graph with a fixed coloring
1 and assume that

(4) ex*(n,L) = O(n2_"‘).
Then for
ﬂ— a+a2+...—|—ak_2
S l4a+a+...4ak2
we have
(5) ex(naLk(Law)) < eX*(naLk(L’¢)) = O(ln’27ﬂ)

A version of this theorem immediately implies the following generaliza-
tion of Theorem 4.24.

Theorem 4.28. If T is a tree colored in Red and Blue, then for L =
Li(T, ), ex(n, L) = O(n'*1).

Related literature: Faudree and Simonovits [142, 143], Simonovits [254],
[255] and Bondy [48].

16 je., k— 1 edges!

7 IL.e., we do not exclude the occurrence of subgraphs of the opposite position!
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4.7. Conjectures on degenerate extremal problems

(a) The first two conjectures below are from Erdés and myself.

Conjecture 4.29. Is it true that for any bipartite graph L, there exist an
a €[0,1) and a cg, > 0 such that

ex(n, L)

o
s —c, >0 as n — oo

Perhaps « is always rational?

The motivation is that perhaps there are always some nearly optimal
graphs coming from finite geometric constructions, or analogous algebraic
constructions, where the whole graph has =~ p™ vertices and the neigh-
borhoods of the vertices are some k-dimensional surfaces (perhaps slightly
modified), therefore a = k/m.

Conjecture 4.30 ([131]). If e(G,) = ex(n,C4) + 1, then G, contains at
least /n + o(y/n) copies of Cy.'®

The motivation is that in the Brown-Erdés—Rényi-T. Sés graph [54,
122] this can easily be verified.

Related literature: Erdés and Simonovits [131].

(b) We close this part with a beautiful but probably difficult problem
of Erdés.

Conjecture 4.31. ex(n,{C3,Cs}) = ﬁn?’/z + o(n?/?).

The meaning of this conjecture is that excluding C3 beside C; has the
same effect as if we excluded all the odd cycles. If we replace C5 by Cs,
then this is true, see [129]. Erd8s risks the even sharper conjecture that the
exact equality may hold:

ex(n, {03, 04}) = ex(n, {04, C3, C5,C7, CQ,C11 .. }) .

Related further literature: Survey paper of R. Guy [165] and also of Guy
and Znam [166] on K (a,b) and Lazebnik, Ustimenko and Woldar [207], [208].

18 This is a supersaturated graph problem, see Section 6.5.
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4.8. A strange excluded graph

In the late 60’s, early 70’s we knew already many results on the Cy-free
graphs. The connection between Cy-free graphs and finite geometries was
also clear. Two important excluded graph sequences, the Ks(a,b) and the
Cyy, were fairly well described. The “cube” theorem was proved. Erdés
wanted to understand what happens if the excluded L is Cy-free. So he
asked two related questions, discussed below.

Problem 4.32. Let Byy be the bipartite graph on z1, 2, x3, 4 and Yy 2,
Y1,3; Y1,45 Y2,3; Y2,4, Y3,4, where y; ; is joined to z; and z;.
(a) Is ex(n, Big) = O(n*?¢), for some constant ¢ > 07

(b) If Ly; is obtained from By by adding a new vertex z and joining
it to all the x;’s, is ex(n, L11) = O(n3/?)?

Clearly, C4 € Big, while Lq; contains six C4’s. The second problem
was solved by Fiiredi, the first one by Faudree and me.

Theorem 4.33 (Firedi [150]). end/? < ex(n, L) < con3/?.

The lower bound immediately follows from that Cy C L;;. More
generally, let F'(k,t) be the bipartite graph with k vertices z1,...,z; and
(g)t further vertices in groups Uj;; of size ¢, where all the vertices of UUj;
are independent and the ¢ vertices of U;; are joined to z; and z; (1 <i <
j < k). Finally, a vertex z be joined to all the z,’s. Erdés asked for the
determination of ex(n, F(k,t)) for t = 1. For t = 1 and k = 2 this is just
C4, so the extremal number is =~ 1n%2. Erdés also proved [86] for F(3,1)
which is the cube graph minus an edge, that ex(n,F(3,1)) = O(n3/?).
(This follows from our Theorem 4.21 as well.)

Theorem 4.34 (Firedi [150]). For every k> 2 and t > 1,

ex(n, F(k,t)) = O(n®?).

Theorem 4.35 (Faudree Simonovits [142]). ex(n, Byg) = O(n*?¢), for
some constant ¢ > 0.
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5. THE PrRoDUCT CONJECTURE

When I started working in extremal graph theory, I formulated (and later
slightly modified) a conjecture on the structure of extremal graphs in non-
degenerate cases.

Conjecture 5.1 (Product structure). Let £ be a family of forbidden graphs
and M be the decomposition family of L. If no trees (or forests) occur in M,
then all the extremal graphs S, for L have the following structure: V (S,)
can be partitioned into p = p(L) subsets Vi,...,V,, with |V;| = % + o(n),
so that V; is completely joined to V; for every 1 <i < j <p.

This implies that each S, is the product of p graphs G;, where each G;
is extremal for some degenerate family £; ;. The meaning of this conjecture
is that (almost) all the non-degenerate extremal graph problems can be
reduced to degenerate extremal graph problems, see Section 5.1. A non-
trivial illustration is the Octahedron theorem:

Theorem 5.2 (Erd8s-Simonovits [127]). Let O¢ = K3(2,2,2) (ie. Og
is the graph defined by the vertices and edges of the octahedron.) If
Sp Is an extremal graph for Og for n > ng(Og), then S, is a product:
Sp = Hp, ® Hy_py, for some appropriate Hy, and H,_,, (depending on Sy,)
where m = in+ o(n). Further, Hy, is an extremal graph for Cy and Hy_p,
is extremal for Ps.

The last sentence of this theorem is an easy consequence of that
Sy, is the product of two other graphs of approximately the same size.
More generally, analogous product results hold for all the forbidden graphs
L = Kpi1(to,ta,t1,-..,tp) if tg = 2 or tg = 3, see [127]. Probably the octa-
hedron theorem can be extended to all graphs L = K, 11(to,%1,...,tp) and
even to more general cases. On the other hand, in [252] counterexamples are
constructed to the product-conjecture if we allow a long path in the decom-
position family. If the decomposition contains trees, both cases can occur:
the extremal graphs may be non-products and also they may be products.
Turan’s theorem itself is a product-case, where the decomposition family
contains Ko = P,. In all the “natural cases” the extremal graphs are prod-
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ucts. A theorem very strongly connected to Theorem 5.2 is that of Griggs,
Simonovits and Thomas [164]'%:

Theorem 5.3. Let Ly, be the family of all graphs on k points and £ edges.
If S, is an extremal graph for L 19 forn > ng(Le,12), then Sy, = Hy@Hy
for some m = %n + o(n). Further, Hy,, is an extremal graph for {Cs,C4}
and e(Hy_p,) = 0.

5.1. The importance of the Product Conjecture

The product conjecture helps to reduce the non-degenerate extremal prob-
lems to degenerate ones. Indeed, if S, is extremal for £ and S, =
Upn ® Wy_m, then U, is extremal for the family M* defined as the set
of those graphs M for which M ® W,,_,, contains some L € L. Further, if
p(L) > 1 then p(M*) < p(L). Generally we see that the graphs G[U;] are
extremal for some an containing M. As we have mentioned, p(M) = 1.

Hence p(an) =1 as well.

Two questions should be clarified here: (a) is it enough to know the de-
composition family to solve an extremal graph problem exactly? (b) What is
really missing to generalize the Octahedron Theorem to all Kp1(to,--.,%p)?

(a) There are cases when the decomposition family is exactly the same
for £, and L9 but ex(n,L1) # ex(n,Ls). So the decomposition does not
completely determine the extremal number. If this is so then we have to use
some further information in our proofs as well. For the octahedron, Pj is
not in M but to determine the extremal graphs, Erd6s and I had to use the
fact that if we put a P3 into both classes of T}, 2, then the resulting graph
will contain Og.

(b) Let us call z € v(L) a weak point if?® ex*(n,L — z) = o(ex(n, L)) .
In our proof of the Octahedron theorem we used that “K(a,b) has a weak
point for p < 3” and we think this always holds but we do not know, since
Conjecture 4.2 is not proved.?!

19 The results of [164] are strongly connected to Erdés’s paper [86], see also Sec-
tions 6.2, 6.4.

20 See Definition 4.26.

21 By the lower bounds in [192, 8], now we know the corresponding “product results”
for every t; > (to — 1)



oome of my ravorite Lrdos 1heorems and fielated fvesults, 1heories I(J

Related literature: Erdés and Simonovits [127], Simonovits [248], [252],
[256).

6. SOME NON-DEGENERATE PROBLEMS

6.1. The Dodecahedron and Icosahedron Problems

Let Hy,ps = Ks—1 ® Th—s41p. The situation for the dodecahedron and
icosahedron graphs is as follows:

Theorem 6.1 (Simonovits [247]). For n sufficiently large, Hy, 5 ¢ is the only
extremal graph for the dodecahedron-graph.

Theorem 6.2 (Simonovits [249]). For the icosahedron-graph I o, Hy 33 is
the only extremal graph, for n > ng.

The case of the Dodecahedron graph is much simpler. Its solution led to
a general theory, described in [247], involving “chromatic perturbations” of
the extremal graphs. The solution of the icosahedron problem led to another
theory: to the solution of problems where the decomposition M (L) contains
a path. The theorem thus obtained is one of the most general results in
that part of Extremal Graph Theory where ex(n, L) = e(T,,) + O(n). It
immediately solves many other problems, see e.g. [256]. The methods used
to prove these two theorems also imply

Theorem 6.3 (Simonovits [256]). For n > ng, Hy, 23 is the (only) extremal
graph for the Petersen graph.

Remark 6.4. The decomposition of the Petersen graph contains 3 inde-
pendent edges.

6.2. Extremal graph problems with linear decomposition

In [247] T have given a fairly general theorem which provides an “almost
algorithmic” solution of many involved extremal graph problems. This
theorem (Theorem 6.8) covered most of the known results of those days with
linear error terms, i.e., when ex(n, L) —e(Ty, ) = O(n). It covered the case
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of the Dodecahedron graph and would have covered the case of the Petersen
graph as well, and several generalizations of the Petersen graph, e.g., the
Kneser graph, and others, except that those days I have not formulated these
problems (see [256]). (In some sense, it was motivated by and covered the
case of the Icosahedron as well.) Informally, the meaning of this theorem was
that if the decomposition contains a path P, then some extremal graphs are
obtained from a T}, , by adding small symmetrical blocks to each class and
a few new, high degree vertices, joined to these blocks very symmetrically.
This theorem enables us to solve many extremal graph problems “almost
algorithmically” even in the case of “chromatic perturbation”. We need
some definitions.

Definition 6.5. The subgraphs Hi,...,H; C G will be called symmetric
in G if (a) there are no edges between them and (b) one can fix some
automorphisms 1; : H; — H; such that foranyy € G—H;—Hy,x € V(H;)
is joined to y iff ¥;(z) € V(H;) is joined to y.

Definition 6.6 (Family of symmetric graphs). D(n,p,r) is the class of
graphs G, satisfying the following symmetry condition:

(i) It is possible to omit < r vertices of Gy, so that the remaining graph
G* is a product (of graphs of almost equal order):

G* = H Gy, where |my— g

<p

<r.

(ii) For every £ < p, there exist connected graphs Hy ; C Gy, such that
Hy; (j=1,...,k) are symmetric subgraphs of G,, (with appropriate iso-
morphisms 1y,; : Hy1 — Hyy), further, v(Hy;) <7 and G, = 32 <k, Hej,
where the sum ) Hy ; is the vertex-disjoint union.

Before formulating our main theorem, let us generalize the ordinary
extremal problems to extremal problems with chromatic perturbations.
A “chromatic condition” is defined in some more general way??; here we
shall restrict ourselves to a simpler, less general version:

Definition 6.7. Let g, Q be two given non-negative integers. The chro-
matic condition A := Ay q is the family of graphs from which one cannot
delete (at most) € vertices to get a g-colorable graph.

22 The theorem is the same for the general case just the definition is more general.
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Given a chromatic condition A, we shall denote by (£, A) the extremal
problem of determining the maximum of e(G,,), assuming that G,, contains
no L € £ and G, € A.

Theorem 6.8 (Symmetrical extremal graphs, [247]). Assume that a finite
family L of forbidden graphs with p = p(L), and a chromatic condition A
are given. If for some L € L and v := v(L),

(6) LCP,®Kp i(v,v,...,v),

then there exists a constant v = r(L) such that, for every n, D(n,p,r)
contains an extremal graph for (L, A).

Related literature: Simonovits [247, 256].

6.3. Large excluded subgraphs

Bollobés, Erdés, Simonovits and Szemerédi [39] considered problems where
the excluded graphs were parametrized and the parameters tended to in-
finity as n — o0. (The Erd8s-Stone theorem is also of such type.) We
formulate here two theorems from that paper.

Theorem 6.9. Let I;, be the graph consisting of h independent vertices.
Let M be a bipartite graph. Put

g(n,M) = max {niny+ex(ni, M)+ ex(ny, M)}.

ni1+na=n

There exists a ¢ > 0 and an ng such that if n > ng and e(G,) >
q(n, M), then G,, contains an L := M ® I}, and every extremal graph
U, € EX(n,L) is a product of an S, € EX(m,M) and an S,_,, €
EX(n —m, M), where m = n/2 + o(n).

Clearly, this theorem is strongly connected (a) to the general theory and
(b) to the Octahedron theorem. Another result of [39] is about the fact that
if a graph does not contain short odd cycles, then it can be turned “easily”
into a bipartite graph. To formulate this result more generally, let L[t]
denote the graph obtained by replacing each vertex of L by an independent
t-tuple and joining two new vertices if the originals have been joined.
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Theorem 6.10. Fix an integer t. For every ¢ > 0 there is a K(¢) such
that if a graph G, cannot be turned into bipartite by deleting at most en?
edges, then Coyy1[t] C Gy, for some 0 < £ < K(e).

Our estimate for K(g) was fairly trivial, much later Komlés has found
the right order of magnitude of K () [193].

Remark 6.11. We gave two proofs of Theorem 6.10. One of them used the
Regularity Lemma, the other was “quite elementary”. Of course, using the
Regularity Lemma, if one gets a Cypy1 then one always gets a “blown-up”
odd cycle, i.e., a Cyp11[t] C Gy, as well, for any fixed t and n > ng(t, ).

6.4. “The complete list of theorems”

Watching Erdés working, beside of his great proving power and elegance,
one striking feature was, how he posed his conjectures. Often we did not im-
mediately understand the importance of his questions. Slightly mockingly,
once one of his best friends, A. Hajnal told him: “You would like to have
a Complete List of Theorems”. I think there is some truth in this remark,
yet one modification should be made. Erd6s did not like to state his con-
jectures immediately in their most general forms. Instead, he picked very
special cases and attacked first these ones. Mostly he picked his examples
“very fortunately”. Therefore, having solved these special cases he very of-
ten discovered whole new areas, and it was difficult for the surrounding to
understand how could he be so “fortunate”. So, the reader of Erdés and
the reader of this survey should keep in mind that Erdds’s method was to
attack first important special cases.

Examples of “complete lists”

The Smolenice?® paper. Perhaps the first survey paper of ErdSs I know
is the Smolenice paper [86]. In the Smolenice paper Erdds defines three
functions, fi(n,k,£), f2(n,k,£), and f3(n,k,£).%*

23 The Smolenice Graph Conference was one of the early ones, in Czechoslovakia,
June 1963.

24 The +1 comes from the fact that sometimes we speak of the maximum number of
the edges in the L-free Gy, in other cases about the minimum number of edges ensuring
an Ly C Gp.
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Here fi(n,k,¢) = ex(n,Lyy) + 1, where Ly, is the family of k-vertex
graphs with £ edges;

fa(n,k,£) = min ex(n,Ly)+ 1, fa(n,k,£) = max ex(n,Ly)+ 1.

Li€Ly Li€Ly,e

Erdds proved several results on these functions, and also listed all the
extremal numbers ex(n, L) for v(L) < 5. Finally, he listed various inter-
esting results and problems, demonstrating his desire to find the “complete
list”.

The case of K 1. When Turédn proved his theorem, Erd6s and others were
fascinated by its simplicity and elegance and proved later many generaliza-
tions of it. I will again illustrate his “quest for the complete list”, but will
not try to list all his theorems connected to ex(n, Kpy1).

The first one is the degree-majorization theorem:

Theorem 6.12. If G, contains no K, and the degrees of G,, are d; >
dy > ... > dy, then there exists a p-chromatic G}, with degrees di > di,
ds > dy, ..., d; >dpy.

Clearly, 2e(G,) < > d; <> df =2e(G}) <e(Typ), (since Ty, has the
most edges among the p-chromatic n-vertex graphs): Theorem 6.12 implies
Turdn Theorem, apart from the uniqueness of the extremal graph.

The following conjecture of Erdés was proved by Bollobas and Thoma-
son [43] and Erdds and T. Sés [136]:

Theorem 6.13. If e(G,) > e(Typ), then G, has a vertex = of degree m
for which its neighborhood T'(z) contains more than e(Tp,,—1) edges.

The motivation of this theorem is that it immediately implies Turdn’s
theorem, by induction on p.

Related further literature: Bondy [46], Bollobas [32].

Rademacher type theorems. Almost immediately after Turdn’s result,
Rademacher proved the following nice theorem (unpublished, see [84]) :
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Theorem 6.14 (Rademacher Theorem). If e(G,) > L"TJ, then G,, con-
tains at least [g} triangles.

This is sharp: adding an edge to (the larger class of) Tj, o we get
n

[5] Kj’s. Erd6Gs generalized this result by proving the following two basic

theorems [84]:

Theorem 6.15. There exists a positive constant ¢; > 0 such that if

e(Gp) > L”—zj , then G, contains an edge e with at least cin triangles

4
on 1t.

Theorem 6.16 (Generalized Rademacher Theorem). There exists a posi-
tive constant co > 0 such that if 0 < k < con and e(G,) > VZT?J + k, then
G, contains at least k[%} copies of Kj.

Erdés conjectured [81] and Lovész and I proved that ¢, = 5 [213]. For
further results see Moon and Moser [228], Bollobés [27, 28], and [213], [214].
Erdés also proved the following theorem, going into the other direction.

Theorem 6.17 (Erdés [97]). If e(G,) = [%J —£ and G, contains at least
one triangle, then it contains at least [%] — ¢ — 1 triangles.

(Of course, we may assume that 0 < £ < [%] -3.)

Lovasz—Simonovits results. Erdds also generalized Theorem 6.16 to the
case of Kp1’s:

Theorem 6.18 (Erd8s, 1962). There exists a constant c, such that if
e(Gr) > ex(n, Kp41) + k for some k € [1,cpn], then Gy, contains at least

ey

0<i<p

copies of Kp1.

The meaning of this result is the following. Let U(n,p, k) be the graph
obtained from T, by adding k edges to it, in its largest class. Then
— assuming that the new edges do not form any triangle — each of them

H T 2
p

0<i<p
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Kp,11's. The above theorem asserts that if k is small, then this is sharp:
the minimum number of K, ;’s for a fixed number of edges is obtained by
U(n,p, k).

This result was also generalized by the Lovasz—Simonovits theorem
[214]. To be quite precise, before formulating the Lovasz—Simonovits the-
orems we have to mention an important partial result of Moon and Moser
[228]. Moon and Moser considered the following problem:

Problem 6.19. What is the maximum number of triangles t(n) a graph
G,, can have without containing a K,?

Denote by N, = N, (G) the number of K’s in G, (e.g., N3 is the number
of triangles, Ny the number of K}’s, etc.). They proved, among others that

Theorem 6.20 (Moon—Moser [228]). For k > 3,

ﬁNk—l(Gn) (k — 1)QM -n

This provides a nice recursive lower bound on Ny /Ny ; and (using
No /Ny = %) we get a lower bound on Ny, see e.g. [214].

Let S, p r be defined as follows: take a T, 1 and a triangle-free
graph By,_,, with e(B,_p,) = E —m(n —m). So e(Tmp-1 @ Bp—m) = E.
Now, Nyt1(Tmp—1 ® Bp—m) depends only on the choice of m. Choose m
to minimize Npt1(Tinp—1 ® Bp—m). The resulting graph is not uniquely
determined but take one of them and denote it by S, p .

Conjecture 6.21 (Lovdsz—Simonovits). If e(G,) > E, then
Np+1(Gn) 2 Npt1 (Snp,B)-

Lovéasz and I could prove this conjecture for the special case when the
edge-number is near to the edge-number of some Turdn graph T;, 5. It can
easily be that this conjecture is “slightly imprecise” i.e. should be slightly
modified for some values of E. Below we formulate one of our main results
in a simplified form.

Theorem 6.22. For every p there exists an €, > 0 such that if E :=
e(Sn) = e(Tnp) + k for some 0 < k < epn?, then Nyi1(Gy) > Nyy1 (Snp E)-

The proof of this theorem is rather long, probably because the ex-
tremum is not sharp enough. We have formulated several simpler results
there. The theorem below for p = 3 was proved by Goodman [161] and
easily follows for the general case from the Moon—-Moser theorem [228].
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Theorem 6.23. Let t := t(Gn) be defined by e(Gr) = (1 — 1) (5). For

t>p
N, (Gn) > (;) (5)"

Here the meaning of ¢ is clear: for a Turdn graph G, = T, it is very
near to the class number p: so it can be considered as the “fractional class
number”. We also proved a corresponding “stability theorem?”.

Theorem 6.24. Let C be an arbitrary constant. There exist positive
constants § and C' such that if 0 < k < dn? and for the t defined above, if

N, (Gn) < (;) (3)" +chnr2,

then there exists a Kp(ni,...,np) such that G,, can be obtained from this
K,(n1,...,n,) by adding at most C'k edges to it and deleting at most C'k
edges from it.

(a) One can automatically extend Theorem 6.24 to the case —én? <
k < én?, (b) and one can immediately see that |nz - %| < C'"Vk. (c) The
importance of this stability theorem lies (partly) in that it can replace the
application of Szemerédi’s Regularity Lemma, in several cases: mostly, when
the conjectured extremal graph is an almost Turan graph.

Related further literature: Lovasz and Simonovits [214], Lovasz [212].

6.5. Supersaturated graphs: the general case

Again, this section will be much shorter than what it deserves. The case of
complete graphs is fairly well described by Bollobés [28, 27], and Lovasz—
Simonovits, [213, 214]. The question of supersaturated graphs for bipartite
excluded graphs (p(L£) = 1) is quite different. It would deserve a whole
chapter. A survey of Erdds and myself on this topic is in the Waterloo
volume [131], and also a “continuation” of this paper is in the same volume,
by me [254]. Here I formulate only one conjecture.

Conjecture 6.25 (Erd8s—Simonovits [131]). If L is bipartite, e := e(L),
v:=wv(L), ¢>0 and E := e(Gy,) > (1 +¢) - ex(n, L), then G,, contains at

least .
, E

n2efv
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copies of L, for some ¢’ > 0.

The meaning of this conjecture is a phase transition, and it says that
if one has more edges than the extremal graph then it has (up to a multi-
plicative constant) at least as many L as the corresponding random graph.
The conjecture has several weaker and sharper versions.

There are many results on hypergraphs as well. Supersatured graph
theorems can be used also to prove ordinary extremal graph results.

Related further literature: Sidorenko [245], Brown and Simonovits [59].

7. FINITE GEOMETRIES AND EXTREMAL GRAPH THEORY

For several years random graph methods and finite geometries were the only
tools to show the sharpness of certain upper bounds in degenerate extremal
graph problems (or related non-degenerate extremal graph problems).??

Clearly, Erdds was very interested in applications and characterizations
of Finite Geometries. This is not the best place to write about this: I will
restrict myself to the applications in Extremal Graph Theory and mention
some further related papers.

For me, the application of finite geometries in Extremal Graph Theory
started in the Erdés paper, with the construction of Eszter Klein [80], to
prove the sharpness of Theorem 2.1. Later Reiman returned to this topic
[238] and then, much later, Erd8s and Rényi [121] used finite geometry for a
diameter-extremal problem. That was followed by the Erdés—Rényi—T. Sés
paper [122], and by the Brown paper [54].

The connection between finite planes and the Cjs-extremal problem is
clear: the last paper [54] is more surprising and it is even more surprising
that it yields a sharp result, see Fiiredi [156].

There was an alternative line, which I feel is very interesting, namely,
the problem of cycles, which was strongly connected to the so called “cage”-
problem.

25 To be precise, there existed a third method as well, which I regarded very near
to the finite geometric method. Also, in most cases (interesting from the point of view of
extremal graph theory) the Random Graph Method gave only good approximation but
sufficiently good lower bounds.
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Let us return to Theorem 4.14. Is it sharp? Finite Geometric (and
other) constructions show that for £ = 2,3,5 YES. (See Singleton [260],
Benson [22], Wenger [289] ...). Unfortunately, nobody knows if this is
sharp for Cg, or for other Cyy’s.

In Erdés’s combinatorics the finite geometries pop up in many further

places, e.g., in de Bruijn-Erdés theorem, which is also connected to the
Gallai-Sylvester theorem.

Several problem papers of Erdos speak of finite geometries. Here I men-
tion only Erdds [100], Erdés, Mullin, Sés, Stinson, [118], ...

Finite Geometries and Polarized Partition Relations can also be found
in Chvétal [75], Berge and Simonovits [23] Sterboul [267], where the Cy-free
partitions of the complete graphs are constructed. This again is strongly
connected to Erdds’s combinatorics but I skip the details.

For some use of finite geometries for hypergraphs see Brown-Erds—Sés
[56], Simonovits [251], ..., T. Sés [261], and in some sense, also Berge-
Simonovits [23].

An interesting result on the connection between Finite Geometries and
the Cy-extremal graph problem is the so called “Friendship” theorem [122].

Related literature: Erdés, [100, 101], T. Sés [261].

7.1. Algebraic approach

Several people felt that the potential use of finite geometric construction
is fairly limited: perhaps some more algebraic approach (say, the use of
algebraic geometry) would provide new, beautiful results. This happened
when Kolldr, Rényai and Szabé proved [192]26

Theorem 7.1. Fix a b > al. For n > ny(a), Theorem 4.1 is sharp:
ex(n, Ka(a,b)) > can_%.

This was slightly improved by Alon, Rényai and Szabé [8]: the condition
b > a! was replaced by b > (a — 1)\

26 perhaps one of the first applications of clearly algebraic methods to provide lower
bounds in an extremal graph problem is Margulis’ Construction 9.3.
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Remark 7.2. Describing walks and cycles in graphs is perhaps one of those
parts of extremal graph theory where algebraic methods may be applied
more often than in other extremal problems. One of the reasons for this is
that the number of walks and also the number of even cycles in a graph
can well be described by matrices and often by eigenvalues. 1 warmly
recommend Noga Alon’s chapter: Tools from Higher Algebra [7], which
provides a lot of interesting and useful information — among others — on
topics I had to describe very shortly.

The reader could ask: what is the real difference between the finite ge-
ometric and the more algebraic constructions? The question is of course,
partly philosophical: in both cases the vertices of the graph form some al-
gebraic structures, and we define the edges of a graph by some equations:
to prove the non-existence of a subgraph L is reduced to the proof of that
some system of equations cannot be solved. Yet, in what I call finite geomet-
ric constructions, there is a geometric idea behind the system of equations,
maybe even a geometric fact, while in the more algebraic construction this
picture seems to disappear.

Remark 7.3. Lazebnik, Ustimenko and Woldar provided several algebraic
constructions in connection with the girth problem. Since the cycles are
thoroughly explained in [48], here I skip these results, just mentioning their
papers, e.g., [207, 208] and also a paper of Wenger [289] and [160].

Remark 7.4. There are other algebraic methods as well. Further, in some
cases it is not so easy to decide if the construction we consider is more
algebraic or more number theoretic. One important construction to be
mentioned is that of Biggs and Hoare [24], a cubic graph G, of which Weiss
[288] has proved that its girth is > (5 + o(1)) logn.

8. ERDOS—POSA THEOREM

8.1. Undirected case

The following question of Dirac and Erdés [87] is motivated partly by
Menger Theorem. We shall call Ly,...,Ly C G vertex-independent, (or
simply, independent) if no two of them have common vertices.
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If G is a graph
(%) not containing two vertex-independent cycles,

how many vertices are needed to represent all the cycles of G7

K satisfies () and we need at least 3 vertices to represent all its cycles.
Bollobés [25] proved that in all the graphs satisfying () there exist 3 vertices
the deletion of which results in a tree (or forest). More generally,

Let RC(k) denote the minimum ¢ such that if a graph G contains
no k + 1 independent cycles, then one can delete t vertices of G
ruining all the cycles of the graph. Determine RC(k)!

Theorem 8.1 (Erdés and Pésa [119]). There exist two positive constants,
c1 and cy such that

ciklogk < RC(k) < coklogk.

The lower bound used random methods, which can be replaced by the
Margulis graph [221]. The Biggs—Hoare—Weiss construction also can be used
here. This theorem is strongly connected to the following extremal graph
theoretical question:

Assume that G, is a graph in which the minimum degree is D.
Find an upper bound on the girth of the graph in terms of D.

2logn

Here the usual upper bound is = m.

8.1.1. The directed case. (a) The most important related result is the
extension of Erdés-Posa theorem to the directed case: this was done (after
several preparatory steps) by B. Reed, N. Robertson, P. Seymour and
R. Thomas [237].27 The first positive result was

Theorem 8.2 (McCuaig [223]). If Disa digraph in which any two directed
cycles have a common vertex, then the directed cycles can be represented
by 3 vertices.

27 Gallai has formulated this problem for the very special case when any two directed
cycles have common vertices: I assume that Gallai meant the general problem as well,
just wanted to restrict himself to the simplest unsolved case. Five years later Younger
published the general question.
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Theorem 8.3 (Reed-Robertson-Seymour—Thomas [237]). If D is a di-
graph not containing k + 1 vertex-independent directed cycles, then the
directed cycles can be represented by Ok(1) vertices.

(b) There are results, due to Dirac [78], W. G. Brown [53] and Lovész
[209], describing the structure of (undirected) graphs not containing two in-
dependent cycles, and actually, McCuaig completely describes the structure
of digraphs without 2 independent dicycles.

9. “RANDOM CONSTRUCTIONS?”

Probabilistic method was one of the most important methods to prove the
existence of complicated combinatorial objects. As I wrote, I will deal with
this subject only superficially. The reader is refered to the books of Erdds
and Spencer [134], of Bollobés [30], of Alon and Spencer [9] of Spencer [265],
and, of course, to the original papers of Erdés and his coauthors, among
others, to the “Art of Counting” [95]. A very recent book on Random
Graphs is that of Janson, Luczak and Rucinski [180].

Erdés wrote two papers with the title “Graph Theory and Probability”,
one in 1959 [82], and the other in 1961, [83]. These papers were of great
importance. The results of these papers may seem to be purely Ramsey
theoretical, fairly surprising in those days, but they have several important
consequences in Extremal Graph Theory as well. One important corollary
of the main theorem of [83], more precisely, of its proof is

Theorem 9.1. If L contains no trees, neither forests, then ex(n,L) >
c’ZnHCﬁ, for some constants cj.,cc > 0.

On the other hand, it is easy to see that if L € L is a tree (or a forest),
then ex(n, L) = O(n). Another important corollary of the above “random
construction” is the lower bound in the Ramsey—Turdn type Erd6s—T. Sés
theorem on RT(n, Kar1,0(n)).

In some other cases the following theorem, from Graph Theory and
Probability II is useful:

Theorem 9.2 ([83]). There exist a constant ¢ > 0 and an ng such that for
n > ng there exist graphs G, with K3 € G, and a(G,) < ¢y/nlogn.

The Random Graph method is definitely one which is very strongly
connected to Erddés’s name and was extremely successful in many cases.
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Here we speak of proving the existence of some objects by random methods.
Though random codes were already used by Shannon and random graphs
were investigated by others as well, definitely, in modern combinatorics it
was the “Erdds method”. Later several variants were established, some
connected to Erdds and Rényi, others to the Lovész Local Lemma [116].
Also there was another line, through Ajtai, Komlés and Szemerédi, then
Rodl. All these methods can be used among others to show the existence of
certain objects. One of the most important such objects was the expander
graph. (I should also mention Janson’s and Suen’s inequalities, see e.g.,
[178, 179], [269], or Boppana and Spencer [50], and, finally, the use of
martingale methods.)

Beside its pure theoretical interest, the fast development of Theoretical
Computer Science and the great difficulties of producing truly random bits
put a pressure on mathematicians to try to replace the “random construc-
tions” by deterministic ones as often as possible.

Today we could say, that many of the “Random Constructions” were
replaced by deterministic ones. The existence of graphs with high girth and
high chromatic number (Erdé&s [83]) was proved without random graphs first
by Lovész [211], (where Lovdsz extended the problem to hypergraphs and
thus succeeded in using a — rather involved — induction), then by Nesetiil
and Rodl [231, 232], then by Kiiz [206] and the Margulis-Lubotzky-Phillips-
Sarnak construction is also a deterministic construction to settle (among
others) this problem as well.

9.1. The Margulis—Lubotzky—Phillips—Sarnak constructions

Sometimes we insist on finding constructions for certain cases, even when
the randomized methods work easily. One such case was the girth problem
discussed above, with one exception. Namely, in the girth problem Margulis
[221, 222] and Lubotzky—Phillips—Sarnak [215, 216], succeeded in construct-
ing regular graphs G,, of (arbitrary high) but fixed degree d and girth at
least c4logn. The original random-graph existence proof is due to Erdés
and Sachs [124].

Theorem 9.3 (Margulis [221]). For every ¢ > 0 we have infinitely many
values of r, and for each of them an infinity of regular graphs X; of degree

2r with girth
4 logv(X,)
X. Z | =y
o) > (§-¢)



oome of my ravorite Lrdos 1heorems and fielated fvesults, 1heories JJdI

Margulis also explained, how the above graphs can be used in construct-
ing certain (explicit) error-correcting codes and generalized this construc-
tion (in the same paper) to arbitrary even degrees. The next breakthrough
was due to Margulis [222] and to Lubotzky, Phillips and Sarnak [215, 216].
The graph of Lubotzky, Phillips and Sarnak was obtained not for extremal
graph purposes. The authors, investigating the extremal spectral gap?® of
d-regular graphs, constructed graphs where the difference between the first
and second eigenvalues is as large as possible. Graphs with large spectral
gaps are good expanders, and this was perhaps the primary interest in [216]
or in [222]. As the authors of [216] remarked, Noga Alon turned their at-
tention to the fact that their graphs can be “used” also for several other,
classical purposes.

Definition 9.4. Let X be a connected k-regular graph. Denote by A(X)
the second largest eigenvalue (in absolute value) of the adjacency matrix of
X. A k-regular graph on n vertices, X = X, ;, will be called a Ramanujan

graph, if A\(X,, ;) <2vEk—1.

I do not have the place here to go into details, but the basic idea is that
random graphs have roughly the spectral gap required above [159] [147],
and vice versa: if the graph has a large spectral gap,?’ then it may be
regarded in some sense, as if it were a random graph. So the Ramanujan
graphs provide near-extremum in some problems, where random graphs are
near-extremal. (See also [6], [74])

Let p, g be distinct primes congruent to 1 mod 4. The Ramanujan
graph XP4 of [215] is a p + 1-regular Cayley graph of PSL(2,Z,) if the
Legendre symbol (2) = 1 and of PGL(2,Z,) if (2) = —1. (Zq is the field

of integers mod ¢.) Here we restrict ourselves to the case (g) =1.

Theorem 9.5 (Alon, quoted in [216]). Let X,, , = X9 be a non-bipartite
Ramanujan graph; (2) =1,k =p+1, n = q(¢> —1)/2. Then the

q
independence number (X, ) < 2—"’;_172

Corollary 9.6 ([216]). If X, is a non-bipartite Ramanujan graph, then
X(Xnk) 2 2\/%

28 — Qifference between the largest and second largest (in absolute value) eigenvalues
29 For a more precise description see [159], [74]. If we regard a d-regular graph, then
we require that the second largest (by absolute value) eigenvalue be o(d): for random

graphs it is around O(\/E) .
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Margulis, Lubotzky, Phillips and Sarnak have constructed Ramanujan
graphs which are p + 1-regular, non-bipartite Ramanujan graphs with
n = q(¢> — 1)/2 vertices, and with

2logn 2\/p
1 X < Y

n,

irth(X > -
glr ( nap+1) 3 logp

p+1
X > —.
X( ’n,p+1) — 2\/]3
Putting p = const or p = n® we get constructions of graphs the existence

of which were known earlier only via random graph methods. Surprisingly,
they are better than the known “random constructions”, showing that

T4t
ex(n, Cok) > cxn’ " 3k+75,

Related literature: Lubotzky [217], Sarnak [242].

10. TOPOLOGICAL SUBGRAPHS

Given a graph L, we may associate with it all its topologically equivalent
forms. Slightly more generally, let 7(L) be the set of graphs obtained by
replacing some edges of L by “hanging chains”, i.e., paths all inner vertices
of which have degree 2.

Problem 10.1. Find the maximum number of edges a graph G, can have
without containing subgraphs from T (L).

Mader [219] showed that

Theorem 10.2. There exists a constant ¢ > 0 such that if e(G) > tn, then
G contains a topological complete p-graph L € T (K,) for p = [c\/log t} .

This immediately implies
Corollary 10.3. For every L, ex(n,T(L)) = O(n).

One could ask: how large topologically complete subgraph is guaranteed
by e(Gr) > tn. Mader [219], Erd4s and Hajnal [113], conjectured that the
answer is &~ ¢v/t. Komlds and Szemerédi proved this apart from a log-power
[201], and then the sharp result was proved by Bollobas and Thomason [45]
and by Komlés and Szemerédi [202]:
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Theorem 10.4 ([45, 202]). There is a positive c¢i such that if e(Gp) > in,
then Gy, contains an L € T(K,) with p > c1V/1.

Related literature: Bollobds, Chapter 7 of [29].

11. EXTREMAL SUBGRAPHS

Until now we were interested in the case when we tried to maximize e(G,)
for G, C K,, assuming that G, contains no subgraphs from £. More
generally, one could ask:

Given a sequence H,, of graphs, determine
ex(n,H,, L) := max{e(Gn) :G,CH, LZG,ifLe ﬁ}.

There are several important subcases of this family of problems. One
of them is the “extremal substructures of the cube”. Here I will skip this
field for two reasons: (a) It seems to me that the phenomena are the least
understood here, (b) the topic is described in details in Bondy’s paper [48]
in this volume.

Related literature: Chung [71], Bollobds, Erdés, and Szemerédi [41],
Bollobds, Erdds and Straus [40].

11.0.1. Subgraphs of random graphs. Babai, Spencer and I (sharpen-
ing some results of Frankl and Ro6dl), proved some theorems on extremal
subgraphs of random graphs [16]. Here I restrict myself to the simplest
cases.

The simplest case was when L = K3 and p > 0 was fixed.

Theorem 11.1 ([16]). There exists a po < 3 such that if Gp, is a ran-
dom graph with edge-probability p > py and F, is a Ks-free subgraph of
maximum number of edges, B,, is a bipartite subgraph with maximum num-
ber of edges, then e(F,) = e(B,,) almost surely. Moreover, all triangle-free
subgraphs F,, with maximum number of edges are almost surely bipartite.

The case of Co,y1 was covered by the Babai-Simonovits—Spencer the-
orem, but only for fixed positive probability p. Haxell, Kohayakawa and
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Luczak [173] extended this result to very low probabilities at the price of
some sharpness of the estimates. Kohayakawa, Kreuter and Steger consid-
ered the case of degenerate extremal problems, above all, the case of Cy
[190], again for low probabilities.

Related literature: Erdds, Janson, Luczak, Spencer, [114], Luczak, [218].

12. TyPIiCAL L-FREE GRAPHS

Erdés, Kleitman and Rothschild [115] started investigating the following
problem:

How many labelled L-free graphs exist on n vertices.

Denote the family of L-free graphs of order n by P(n,L). We have a
trivial lower bound on |P(n,L)|: take any fixed extremal graph S, and
take all the 2°*("L) subgraphs of it:

(7) |P(n, L)| > 2L,
Erdés conjectured that this is mostly sharp: |’P(n, L)‘ = 2(1+o(1))ex(n,L) Ty
most cases it is irrelevant if we count labelled or unlabelled graphs.

Theorem 12.1 (Erd6s-Kleitman-Rothschild [115]). The number of K,-
free graphs on n vertices and the number of p — 1-chromatic graphs on n
vertices are in logarithm asymptotically equal: For every €(n) — 0 there
exists an n(n) — 0 such that if P(n, K,,€) denotes the family of graphs of
n vertices and with at most en? subgraphs K, then

ex(n, Kp) < ‘ logP(n,Kp,5)| < ex(n, Kp) + 2.

In other word, we get “a large part of them” by simply taking all the
(p — 1)-chromatic graphs.

More generally, Erd8s, Frankl and Rédl [107] proved that
Theorem 12.2. If x(L) > 2, then

P(n, L)| = 2ox(mL)+olex(n.L)
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The corresponding question for bipartite graphs is unsolved. Even for
the simplest non trivial case, i.e. for Cy, the results are unsatisfactory. This
is not so surprising. All these problems are connected with random graphs,
where for low edge-density the problems often become much more difficult.
Kleitman and Winston [189] showed that |P(n,Cy)| < 2¢nV but the best
value of the constant ¢ is unknown. The truth should be, of course (at least,
by Erdés),

‘p(n’ 04)| _ 9((1/2)+o(1))nv/n_

Kolaitis, Promel and Rothschild [191] sharpened Theorem 12.1: they proved
that, in fact, almost every K, -free graph is p-colorable. (“G is p-colorable”
means that x(G) < p.)

Theorem 12.3. Let C,(p) be the set of labeled p-colorable graphs on
{1,...,n}. Then

‘ P(na KP+1)|

1 .
‘Cn(p)| — as n— oo

Later, Promel and Steger [233] extended Theorem 12.1. To state their
result, we remind the reader that an edge e of L is color-critical if x(L—e) <
Xx(L), and that many results for Kj; can be generalized to graphs having
critical edges.

Theorem 12.4. Let x(L) =p+ 1. Then

| P(n, L)|
|Cn(p)]

if and only if L contains a color-critical edge.

—1 as n— o

Many new results concerning this area were proved in the last few years.
One of them is our improvement of the Erdés—Frankl-Rodl theorem. Balogh
and Bollobds and I proved [19] that

Theorem 12.5. For every nontrivial’® family L of graphs there exists a
constant v = vy > 0 such that

(8) ‘P(n,£)| S 2%(1*%)”,24»0('”277 logn)’

30 j.e. where e(L) > 0 for every L € L.
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for p = mingep x(L) — 1.

Assume that M is the decomposition class of £ and ex(n, M) =
O(n?7¢). Then we may take v = c in the above theorem. We also have
some sharper results but I skip the details here. I finish with a related
problem of Erdés.

Problem 12.6 (Erdé&s). Determine or estimate the number of maximal
triangle-free graphs on n vertices.

Some explanation. In the Erdés—Kleitman—Rothschild case (for K3)
the number of bipartite graphs was large enough to give a logarithmically
sharp estimate. Here K(a,n — a) are the maximal bipartite graphs, their
number is negligible. This is why the situation becomes less transparent.

The case of induced subgraphs is discussed, e.g., in Promel-Steger [234]
Bollobds and Thomason [44], or Balogh, Bollobds and Weinreich [20].

13. PENTAGONLIKE STRUCTURES

Many problems on triangle-free graphs are connected to the pentagon-
structure. We shall call a graph “pentagonlike” if we can partition its ver-
tices into Cy,...,Cs so that all the edges join some C; to C;11 where the
indices are counted mod 5: Cg := C;. The maximal pentagonlike struc-
tures are obtained when C; is joined to C;i1 completely. Cs[ni,...,ns)
denotes the (maximal) pentagonlike graph when |C;| = n;. Denote by C5[n]
this graph if |n; — [n/5]| < 1.3! Disregarding T2, these are the simplest
triangle-free structures. There are many problems where pentagonlike struc-
tures provide the extremal configurations. Denote by D(G) the minimum
number of edges to be deleted from G to get a bipartite graphs.

Conjecture 13.1 (Erdés). If K3 Gy, then D(G,) < n?/25.

The maximal pentagonlike graph @, := Cs[n] shows that, if true, this
conjecture is sharp. The conjecture is still open, in spite of the fact that
good approximations of its solutions were obtained by Erdés, Faudree, Pach
and Spencer [105].

31 Actually, this is not uniquely defined but that does not matter here.
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Theorem 13.2. For every triangle-free graph G with n vertices and m
edges

m(2m?2 — n? m2
9) D(Gy) < max{%m B . }

m _
n?(n? —2m) ’ n?

This proves the conjecture for e(G,) > %2 The general conjecture is
still open for % < e(Gy) < "—52 The next theorem of Erdds, Gydri and
myself [112] states that if e(Gy) > %nQ, then the pentagon-like graphs need
the most edges to be deleted to become bipartite. (Our result provides also

information on the near-extremal structure.)

Theorem 13.3. If K3 € G, and e¢(G,) > %2, then there is a pentagonlike
graph H; with e(Gy) < e(H}), for which D(G,,) < D(H}).

13.0.2. The number of Cj’s in triangle-free graphs. A beautiful

conjecture of ErdGs states that if K3 € G,, then G, contains at most

. . . . . 5 .
(%) ° copies of C5. The motivation is that Cs[n] contains =~ (%) copies of

Cs. In an elegant, short note E. Gy6ri proved

Theorem 13.4 (Gyéri [169]). Let Gy, be a triangle-free graph. Then the
number of Cs’s in G, is at most 1.03 X (%) >,

This was improved by Z. Fiiredi (in a “far from trivial way”) to
Theorem 13.5 (Fiiredi [153]). Let G,, be a triangle-free graph. Then the

number of Cy’s in G,, is at most 1.003 x (%) .

13.1. Perturbation problems: Minimum degree problems

Given a family £, the Zarankiewicz problem [290]3? asks for the determina-
tion of dex (n, £) = max { dmin(Gr) : G, 2 L € L}, that is, the maximum
minimum valence of an L-free Gy,. Since dmin(Gr) < (2/n)e(Gy),

dex (n, L) < %ex(n,ﬁ) < (1 - %) n+ o(n).

32 Usually, we call two different questions as Zarankiewicz problem: the other is the
determination of ex(n, K(p, q)) .
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On the other hand, T}, , shows that this is sharp. This means that in solv-
ing Turan’s problem, we have also solved Zarankiewicz’s problem. Theo-
rem 6.8 implies that chromatic perturbation in Turan’s theorem changes the
maximum only negligibly-that is, by O(n). The chromatic perturbation in
Zarankiewicz-type problems is interesting because it changes the maximum
by cn? edges:

Theorem 13.6 (Andréisfai, Erdds and T. Sés [11]).

max{dmin(Gn) : X(Gn) >p+1, Kp—|—1 Z Gn}

= (1—m)n+0(1). |

The extremal graphs have fairly transparent structures: for K3 they are
pentagonlike graphs, for K, we take (approximately) Cs[t] ® Tp—5tp—1,
where t = ﬁ.

Erdés and Simonovits extended the above result to arbitrary L with
critical edges. The surprising phenomenon is that in all other cases we have
smaller upper bounds:

Theorem 13.7 (Erdds and Simonovits [128]). Let L # K, 11, p := x(L)—1.
Assume that L has a critical edge. If G, is L-free, and x(Gy) > p+1, then

duin(G) < (1 )+ 0,

v
p—(1/2)

and this is sharp.

The case of K3, high chromatic number. Define ¢(n,L,t) as the
minimum m such that if dyi,(Gy) > m, and x(G,) > t, then L C G,.
The general problem of determining v(n, K,y1,t), t > p + 1, is much more
difficult. We conjectured that ¥ (n, K3,t) =~ n/3, for t > 4.

Let us restrict ourselves to this simplest case.

Theorem 13.8 (Haggkvist [174]). If G, is triangle-free and dmin(Gy) >
%n, then GG, is pentagonlike.

Several conjectures were formulated and proved or disproved in this
field. A. Hajnal (using the Kneser graph) [128] gave a construction showing
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that ¥(n, K3,t) > (% — 0(1)) n. Perhaps today one of the most informative
source on the situation is the paper of Guoping Jin’s [181].

It seems to me that the next theorem was the breakthrough: Jin has

defined a sequence of graphs F'(d) as follows: the vertices are x1,...,Z34—1
and the edges are all the edges of the corresponding Cs4—1, i.e., z;Tit1,
where z34 := z1, and also the “diagonals” z;Tit3, ZiZTit6, - .- TiTi13[d/2]2-

So, F1 = Ko, F5 = C5. A graph is of F(d)-type if it can be homomorphically
mapped into F(d).

Theorem (Guoping Jin [181]). If G, is triangle-free and dpyin(Gp) >
[(dﬂ)"J, then G, is of F; type. Further, this is sharp for 1 < d < 9:

3d+2

there is a triangle-free non-F'(d)-type graph with dp,i, (G) = [(gﬂ);J .

For a sharper theorem see Guoping Jin [182], for a short proof of the
original Andrisfai-Erdés—T. Sés theorem, see Brandt [52]. In a recent
paper, C. Thomassen [275] proved the following related result:

Theorem 13.10. Let ¢ > 1/3 be any fixed real number. Then the triangle-
free graphs of minimum degree > cn (where n is the number of vertices)
have bounded chromatic number.

14. ANTI-RAMSEY THEOREMS

Perhaps the first person I heard speaking of anti-Ramsey theorems was
R. Rado, in Montreal, 1972, see [235]. Yet, that was slightly different. Babai
[12] connects anti-Ramsey theorems to Sidon sets. This way Babai thinks
that Anti-Ramsey theorems were first considered by FErdds and Turan, back
in 1941 [138]. The topic I will shortly describe here is the following:

Given a family £ of forbidden graphs, (maximum) how many colors
can one use to color the edges of K,, without having a copy of some
L € L colored with all different colors, i.e. colored in e(L) colors.
Denote the maximum by AR (n, L).

An edge-colored graph L will be called Totally Multicolored (TMC)
if all its edges have distinct colors. It is clear that if we use (72‘) colors, then
we shall have a Totally Multicolored copy of any L with v(L) < n. If we
use one color, then we shall have no Totally Multicolored L (except K; and

K5). So AR (n, L) is well defined.
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To get some orientation, let us assign to each £ a family £* by taking
for each L € £ and for each e € E(L) the graph L — e. These graphs form
L*. Consider

Construction 14.1. Take an extremal graph S, for L* and color its edges
by (all distinct) e(Sy,) colors and color the edges of its complementary graph
G,, by another color.

This shows that
Claim 14.2. AR (n,L) > ex(n,L*) + 1.
This estimate is often sharp:

Theorem 14.3 (Erdés, T. S6s and Simonovits [133]). For n > ny(p),

AR (n,Kpi1) = ex(n, Kp) + 1.

Montellano—Ballesteros and Neumann-Lara [226] removed the condition
n > ng from the above theorem, by providing a quite elementary induction
proof.

The cycle problem. As in the Erdés-Gallai Theorem, C>; is the family
of cycles of length > £. One of the unsolved problems of the field is to
determine AR (n,C>¢). The next construction provides a lower bound and
is conjectured to be sharp:

Construction 14.4 ([133]). Partition n vertices into v = [;7] groups
Ui,...,U, of £ — 1 vertices (the last group may be smaller). All the pairs
(z,y) within the groups are colored by an “own” color, i.e., by a color not
used for other edges. The edges (z,y) z € C;, y € C}, for j > i are colored
by “i” (not used for the other edges).

Conjecture 14.5. The above coloring provides the (asymptotically?) best
coloring for the AR (n,C>)-problem.

For ¢ = 3 the problem is trivial, for £ = 4 the conjecture was proved by
Alon [5]. Recently Tao Jiang and D. West proved the conjecture for £ = 5, 6
and provided some further estimates for £ > 6, see [184]. The same result
was independently proved, perhaps a few month later, by Ingo Schiermayer.

Related further literature: Tao Jiang [183].
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An application of an Anti-Ramsey theorem. First Babai [12] then
Babai and T. Sés [17] used anti-Ramsey theorems to prove estimates on
Sidon subsets of abstract groups. This was also used to estimate the order
of a Cayley graph containing a given graph.

Uniformity conditions. In Construction 14.1 all the colors of S;, were used
only once, while the colors of the complementary graph had multiplicity
> cn?. This is very uneven. One can ask, what happens if we add an
extra condition on the edge-color distribution, ruling out the very uneven
coloring. Several related results can be found in some papers of Erdds and

Tuza, see e.g. [139].

Trees of small diameter. I wish to mention here two new results.
A. Bialostocki conjectured that if 7, (£) denotes the family of spanning trees
of diameter £, then

AR (n,7,,(4)) :(”;2>+1 if n> 3.

B. Montagh proved this, moreover, he proved the stronger result:

Theorem 14.6 (Montdgh [224]). Let T, be the family of trees of order n,
diameter 3, with n — k edges, where one of the degrees is at least n — 2k — 2.
Then

—-k-1 11
AR(”:%,k):<n 9 )‘l‘l, if n25k+7-

Improving an earlier result of Simonovits and T. Sés [257] Montdgh
proved that

Theorem 14.7 (Montégh, 2001 [225]). If n > k% + 7k, then

—-k—-1
AR(naPn—k) = (n 9 ) + 1.
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15. HYPERGRAPH EXTREMAL PROBLEMS

Erdés wrote in [102]:

As far as I know, the subject of hypergraphs was first mentioned
by T. Gallai, in conversation with me in 1931. He remarked that
hypergraphs should be studied as a generalization of graphs. The
subject really came to life only with the work of Berge.

As we mentioned, we distinguish “intersection theorems for set systems”
and “hypergraph extremal problems”, but many people prefer to regard
them together. Anyway, for hypergraphs, most of the extremal problems
are unsolved or only partially solved. I recommend the paper of Firedi [151].
Chapter 6 of the Chung-Graham book [73] deals with open Erdds problems
(in this field) and is a very good source to use. Also, for Intersection
Theorems one of the basic sources could be, e.g., Peter Frankl’s Chapter
24 in the Handbook of Combinatorics [145].

Hypergraph problems are much more involved than ordinary graph
problems. Therefore, despite the fact that there are a few beautiful theorems
in the field, in most cases we have only unsatisfactory results. A hypergraph
is r-uniform if every edge has r vertices. Extremal problems extend to -
uniform hypergraphs, and the corresponding definitions of EX(n, L) and
ex(n, L) are straightforward.

The oldest hypergraph extremal problems are due to Turdn [280]. All
hypergraphs are assumed to be uniform here.

Turdn’s Problem. For given 7, p and n, how many edges can an r-
uniform hypergraph H,, have without containing the complete hypergraph
of order p?

This problem seems to be extremely difficult. Here we restrict ourselves
to the simplest case of the corresponding conjecture, with » = 3 and p = 4.

Conjecture 15.1. Let Té‘g be the 3-uniform hypergraph whose n vertices
are divided into three sets C1, Cy and C3 (as nearly equal in size as possible),
where a triple {z,vy, z} is an edge if no two of x,y, z are in the same set or if
two belong to C; and the third belongs to Cj1 (subscripts taken modulo 3).
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Turan’s conjecture is that TT(L?:‘% has the maximum number of edges
among the 3-uniform hypergraphs of order n not containing the complete

hypergraph of order 4.

Even this simplest case is unsolved. If the conjecture is true, then
the extremal graph is not unique. In addition to there being some trivial
variations of Turan’s construction, a very nice construction was found by
Brown [55] and then a more general one, by Kostochka [204].

Related literature: Katona, Nemetz, and Simonovits [188], Spencer [264],
de Caen [63] Sidorenko [244].

15.1. Erdés hypergraph theorem

We now turn to the hypergraph version of the Kévari-T. Sés—Turan theo-
rem. Let KT(T) (m) denote the complete r-partite r-uniform hypergraph with
m vertices in each of its classes, where the edges are the r-tuples with one
vertex from each class. The problem is to determine how many r-tuples can

H,, have without containing KT(T) (m). Bounds for this number were found
by Erdés®? [85]:

Theorem 15.2. There exists an ng such that for n > nyg

1-7

nrm T < ex(n,Ky) (m)) <n'mem 7,

The proof of the upper bound of this theorem is not much more difficult
than that of the K6vari-T. Sés—Turdn theorem: as a matter of fact, it can
be reduced to iterating the argument of the proof of Theorem 4.1. The
lower bound is obtained by the method of random hypergraphs.

The Problem of Jumping Constants. Theorem 15.2 has the following
consequence:

Corollary 15.3. Let ¢ > 0, and let (S,) be a sequence of r-uniform
hypergraphs such that e(S,) > ¢(7). Then S, contains a subhypergraph
H,, with e(Hy,) > (™) and m — 00 as n — oco.

rT \r

33 As Fiiredi pointed out to me, formally the lower bound was incorrect in Erdés’s

theorem: the exponent in the lower bound was 7 — cm!™". Since no proof was given, it
is difficult to decide today what Erd8s really meant there. For us the upper bound is the
really important one.
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This means that if the edge-density of S, is positive, then, for some
appropriately chosen subgraphs, this density must jump up (independently
of €) to :—; The problem of the jumping constants can be formulated in its
most special form (with r = 3) as follows:

Problem 15.4. Does there exist a constant ¢ > 0 (independent of €) such
that if (S,) is a sequence of 3-uniform hypergraphs for which e(S;) >
(% + 5) n®, then there exists a sequence of subgraphs H,, C S, (where

m — 00 as n — 00), for which e(Hp) > (35 + ¢) m3?
Define the edge-density of a sequence of r-uniform hypergraphs S,, by

e(Sh) )
()

lim sup

The general problem is

Problem 15.5 (Erdds). Characterize those constants c¢ for which there
exists an f(c) > ¢ such that, whenever the edge-density of (S,) is larger
than c, then there is a sequence of subgraphs H,, C S,, (m — o0) for which
the edge-density of H, is at least f(c).

These are the “jumping constants”. By the Erdés—Stone theorem, every
¢ is a “jumping constant” for r = 2. Clearly, ¢ = 0 is also a jumping
constant, for any r. Frankl and Ro6dl showed that there are infinitely
many extremal densities which are not jumping constants (for 3-uniform
hypergraphs) [146].

15.2. Brown—Erdés—T. Sés theory

W. G. Brown, Erdés and T. Sés wrote two papers [56], [57]. The first paper
consisted (in some sense) of two separate parts. Here we regard the density
problems:

Given the parameters r, k, and ¢, what is the maximum number
of hyperedges an r-uniform hypergraph can have without having a
k-vertex subhypergraph of at least £ hyperedges.

Let Ly, ¢ denote the family of r-uniform hypergraphs with k vertices and
£ edges. Brown, Erdés and T. Sés [56], [57] began investigating the function
f(n,k,£) = ex(n, Ly ). (The idea of investigating f(n, k, £) goes back most
probably to the Smolenice paper [86], see Section 6.4.)
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This “frame” includes many interesting problems: the (4,4) problem
is Turdn’s hypergraph problem, the (4,2) problem is just the problem of
Steiner triple systems. Also, the (4, 3) problem is among the famous hyper-
graph extremal problems, see Section 5 of [259].

The problem of finding good lower and upper bounds is fairly simple for
some pairs k,t and extremely difficult for others. Brown, Erdés and T. Sés
have solved many cases of this general frame. The first real difficulty which
they encountered was the case r = £ = 3, k = 6. Although they could not
settle this problem, Ruzsa and Szemerédi [241] later found an astonishing
result.

Let ri(n) denote the maximum number of integers in [1,7] containing
no arithmetic progression of length k. Szemerédi’s famous theorem [272]
asserts that r4(n) = o(n). Further, it is known (see Behrend, [21], Heath-
Brown [175], Szemerédi [274], Bourgain [51]) that
n

nl—c/\/logn < 7"3(7’1,) < J .
(logn)zte

One can easily see that f(n,6,3) < cn?.

Theorem 15.6 (Ruzsa—Szemerédi). There exists a ¢ > 0 such that

en - r3(n) < f(n,6,3) = o(n?).

Clearly, the Ruzsa—Szemerédi theorem implies r3(n) < f(n,6,3)/n =
o(n).

One reason, why this result is so surprising is that it implies the nonex-
istence of an « such that (for some c¢; > 0)

cn® < f(n,6,3) < con®.

Though we cannot prove it, we are convinced that for ordinary graphs the
situation is completely different (see Conjecture 4.29).

Frank] and R6dl have tried to extend this and prove r4(n) = o(n) using
an appropriate extremal problem which could be solved by an appropriate
version of the Szemerédi Regularity Lemma, and they have announced that
they succeeded in this for r4(n). Until now nobody knows if the general
case can be solved this way.

We close this part with an unpublished result of Fiiredi:
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Theorem 15.7. ex(n,Ls3) = %2 + o(n?).

Applications of the Ruzsa—Szemerédi theorem. The Ruzsa—Szemerédi
theorem has several applications in graph theory.

(a) One of the most interesting applications is

Theorem 15.8 (Firedi [154]). If G, is a graph of diameter 2 but deleting
any edge of G, the diameter increases to 3, then e(G,) < e(Ty2) if n > ny,
with equality holding if and only if G, =T} 2.

(b) Another application is when Gyérfis first generalized it as follows:

Theorem 15.9 (Gyarfas [167]). If G, is a graph which can be edge-colored
in cn colors so that each color defines a subgraph of maximum degree d, then
e(Gn) = Od(nz)'

The case d = 1 is equivalent with the (6,3) problem. Gyéarfis used this
result as a lemma to prove a conjecture of Fiiredi and Kahn [157] on the
dimension of lattices.

Burr, Erdés, Graham and T. S6s [61, 62] started investigating the
following “anti-Ramsey” problem:

Given a sample graph L, and two integers n and e, what is the
minimum number of colors, k = k(n, e, L) for which there exists a
G, with e = e¢(G,) edges that we can edge-color in k colors so that
every L C G, is Totally Multicolored (i.e. all the edges of L have
distinct colors).

Clearly, this is interesting only for e > ex(n, L). Burr, Erdés, Graham
and T. Sés [61] gave various upper and lower bounds on the minimum
of k(G, L) for fixed n and e. One important and striking fact was that for
L = Py to solve the problem is equivalent with proving the Ruzsa—Szemerédi
theorem. Several related results can be found in [61, 62] and [132].

Related further literature: Simonovits [1].

15.2.1. Hypergraphs and color-critical graphs. A graph is k-edge-
color-critical if it is k-chromatic and deleting any edge of it we get a k — 1-
chromatic graph. The 3-critical graphs are uninteresting: they are just the
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odd cycles. Many questions were formulated by Dirac and Erd6s about
critical graphs. Erd6s asked, how many edges can a k-critical graph have.
Dirac, in return, showed his 6-critical graph G, := Cgpy1 ® Copyq1 with
\_%ZJ + n edges. Gallai also had several interesting results and conjectures
on color-critical graphs. One of his conjectures asserted that color-critical
graphs cannot have too many independent vertices. I have invented a
method which, if applied to the Dirac construction, gave a 6-critical graph
with n—o(n) vertices of degree 5, completely disproving Gallai’s conjecture,
but only for 6-critical graphs. Then I decided not to publish this result since
I learned from Erdés that Brown and Moon [58] (roughly the same time)
found a much more constructive and much stronger counter-example to
Gallai’s conjecture.

Next fall Bjarne Toft visited Budapest and I learned of his very simple
and very nice construction of 4-critical graphs with many edges [276]. We
had some discussion with Toft and then independently, but in a very similar
way obtained a graph G,, which was 4-critical and its minimum degree was
cy/n [277], [250]. Further, I proved (using a hypergraph extremal problem)
that a 4-critical graph G,, cannot have more than n — O(n?/°) independent
vertices.

Let Lrgrr denote the family of 3-uniform hypergraphs obtained by tak-
ing an arbitrary triangulation of the sphere in R3.

Theorem 15.10 (Brown-Erdés—T. Sés [56]).

5/2 2

cin’® < ex(n,Lrrr) < con®/?.

Let £;.conr be the family of 3-uniform all the hypergraphs H, s ob-
tained by taking a cycle z1xs ... zxx1 and r new vertices y1, ..., ¥y, and tak-
ing the triplets z;z; 11y for j =1,...,randi=1...,k (where 2311 := z1).

Theorem 15.11 (Simonovits [250, 251]). ex(n,Lr.cong) = O(n371/")
and for r = 2,3 the upper bound is sharp.

I arrived at this result investigating color-critical graphs. I proved it
independently from Brown, Erdés and T. Sés. For r = 2 their upper bound
is formally weaker, but actually they prove exactly what I proved and their
lower bound is stronger. For r = 3, I generalized Brown’s construction [54]:
I used a “modified” finite geometric construction. L. Lovasz [210] improved
my estimate on the Gallai problem, by taking a wider class of forbidden
graphs: Let Lsprrner be the family of all the 3-uniform hypergraphs in
which every pair of vertices is in an even number of 3-edges.
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Theorem 15.12 (Lovész [210]). ex(n, LsprrNEr) = O(n?).
Using my method and this stronger extremal result, Lovasz proved

Theorem 15.13. Let ai(n) denote the maximum number of independent
vertices in a k-critical graph on n vertices. Then

n — 2kn"/%* =2 < qp(n) < n — (k/6)n'/*=2),

The importance of this paper lies (among others) in that this is where
Lovész started using linear algebra methods to graph problems.

Related literature: Bollobas, Chapter 5 of [29], Lovész [212].

15.3. Some solved hypergraph extremal problems

(a) G.O.H. Katona conjectured that if a 3-uniform hypergraph has 3n ver-
tices and n3+1 triples, then there are two triples whose symmetric difference
is contained in a third triple. The 3-partite hypergraph K. §3) (n,n,n) showed
that if true, the conjecture is sharp. Bollobds proved this conjecture [26]34,
and conjectured some generalizations which were proved for 4-uniform hy-
pergraphs by Sidorenko [243] and some related estimates were also obtained

for the general case by D. de Caen [64].

(b) Color-critical graphs play an important role in the theory of ordinary
extremal graphs: these are where the extremal graphs are the simplest: T}, ;.
For hypergraphs perhaps the Fano plane is one of the simplest color-critical
graphs. One corresponding conjecture of V. T. Sos was:

Conjecture 15.14. Let F; be the 3-uniform hypergraph defined by the 7
triples of the Fano Plane. Is it true that (for n large) one extremal graph
for F; is the graph obtained by splitting n vertices into two parts of order
~ %n and taking all the triplets having vertices in both classes.

The conjecture has recently been proved by de Caen and Fiiredi, [66],
applying some multigraph results of Fiiredi and Kiindgen [158]. For more
details, see our multigraph survey with W. G. Brown [60].

Related literature: Mubayi and Rodl [230].

34 Bollob4s mentioned that Erdés drew his attention to this problem
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16. COMPLETE?

Is this survey sufficient to get a good picture about these fields? By no
ways. These few pages are not enough to describe such a huge area. Among
many other topics, I completely left out everything on the list-chromatic
number [123], Erdds results on Tournaments, the Erdés-Goodman—Pésa
[111] results and the Hajnal-Szemerédi theorem on the Erdds conjecture
[171]. T also left out here many results about covering a graph with given
type subgraphs, results of Erdés and T. Sés and others on “unavoidable
structures” ...and many further interesting and important fields.

Many applications, motivations can be found (as I stated) in [60], [259],
and also in my notes to Turdn’s collected papers [284].

But let me stop here. =

Acknowledgements. I would like to thank to many of my colleagues for
their help; perhaps above all, to Z. Fiiredi and V. T. S6s.
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